Balint Pato, Theerapat Tansuwannont, Shilin Huang, Kenneth R. Brown
{"title":"保距旗语容错纠错优化工具","authors":"Balint Pato, Theerapat Tansuwannont, Shilin Huang, Kenneth R. Brown","doi":"10.1103/prxquantum.5.020336","DOIUrl":null,"url":null,"abstract":"Lookup-table decoding is fast and distance preserving, making it attractive for near-term quantum computer architectures with small-distance quantum error-correcting codes. In this work, we develop several optimization tools that can potentially reduce the space and time overhead required for flag fault-tolerant quantum error correction (FTQEC) with lookup-table decoding on Calderbank-Shor-Steane (CSS) codes. Our techniques include the compact lookup-table construction, the meet-in-the-middle technique, the adaptive time decoding for flag FTQEC, the classical processing technique for flag information, and the separate <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math>- and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Z</mi></math>-counting technique. We evaluate the performance of our tools using numerical simulation of hexagonal color codes of distances 3, 5, 7, and 9 under circuit-level noise. Combining all tools can result in an increase of more than an order of magnitude in the pseudothreshold for the hexagonal color code of distance 9, from <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>1.34</mn><mo>±</mo><mn>0.01</mn><mo stretchy=\"false\">)</mo><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></math> to <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>1.43</mn><mo>±</mo><mn>0.07</mn><mo stretchy=\"false\">)</mo><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></math>.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization Tools for Distance-Preserving Flag Fault-Tolerant Error Correction\",\"authors\":\"Balint Pato, Theerapat Tansuwannont, Shilin Huang, Kenneth R. Brown\",\"doi\":\"10.1103/prxquantum.5.020336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lookup-table decoding is fast and distance preserving, making it attractive for near-term quantum computer architectures with small-distance quantum error-correcting codes. In this work, we develop several optimization tools that can potentially reduce the space and time overhead required for flag fault-tolerant quantum error correction (FTQEC) with lookup-table decoding on Calderbank-Shor-Steane (CSS) codes. Our techniques include the compact lookup-table construction, the meet-in-the-middle technique, the adaptive time decoding for flag FTQEC, the classical processing technique for flag information, and the separate <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>X</mi></math>- and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Z</mi></math>-counting technique. We evaluate the performance of our tools using numerical simulation of hexagonal color codes of distances 3, 5, 7, and 9 under circuit-level noise. Combining all tools can result in an increase of more than an order of magnitude in the pseudothreshold for the hexagonal color code of distance 9, from <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mn>1.34</mn><mo>±</mo><mn>0.01</mn><mo stretchy=\\\"false\\\">)</mo><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></math> to <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mn>1.43</mn><mo>±</mo><mn>0.07</mn><mo stretchy=\\\"false\\\">)</mo><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></math>.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.020336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
查找表解码速度快且能保持距离,因此对采用小距离量子纠错码的近期量子计算机体系结构很有吸引力。在这项工作中,我们开发了几种优化工具,它们有可能减少在 Calderbank-Shor-Steane (CSS)代码上使用查找表解码的旗帜容错量子纠错(FTQEC)所需的空间和时间开销。我们的技术包括紧凑型查找表结构、中间相遇技术、用于旗帜 FTQEC 的自适应时间解码、旗帜信息的经典处理技术以及单独的 X 和 Z 计数技术。我们通过对距离为 3、5、7 和 9 的六边形色码进行数值模拟,评估了这些工具在电路级噪声下的性能。综合所有工具,距离为 9 的六边形色码的伪阈值提高了一个数量级以上,从 (1.34±0.01)×10-4 提高到 (1.43±0.07)×10-3。
Optimization Tools for Distance-Preserving Flag Fault-Tolerant Error Correction
Lookup-table decoding is fast and distance preserving, making it attractive for near-term quantum computer architectures with small-distance quantum error-correcting codes. In this work, we develop several optimization tools that can potentially reduce the space and time overhead required for flag fault-tolerant quantum error correction (FTQEC) with lookup-table decoding on Calderbank-Shor-Steane (CSS) codes. Our techniques include the compact lookup-table construction, the meet-in-the-middle technique, the adaptive time decoding for flag FTQEC, the classical processing technique for flag information, and the separate - and -counting technique. We evaluate the performance of our tools using numerical simulation of hexagonal color codes of distances 3, 5, 7, and 9 under circuit-level noise. Combining all tools can result in an increase of more than an order of magnitude in the pseudothreshold for the hexagonal color code of distance 9, from to .