Saeed Ismaeilimoghadam, Mehdi Jonoobi, Yahya Hamzeh, Bahareh Azimi, Andrea Mezzetta, Lorenzo Guazzelli, Patrizia Cinelli, Maurizia Seggiani, Serena Danti
{"title":"适合婴儿纸尿裤的高滞留能力海藻酸钠基生物杂化超级吸收聚合物的开发与特性分析","authors":"Saeed Ismaeilimoghadam, Mehdi Jonoobi, Yahya Hamzeh, Bahareh Azimi, Andrea Mezzetta, Lorenzo Guazzelli, Patrizia Cinelli, Maurizia Seggiani, Serena Danti","doi":"10.1007/s10924-024-03297-3","DOIUrl":null,"url":null,"abstract":"<div><p>Due to their capacity of water absorption, super absorbent polymers (SAPs) are greatly requested in hygienic applications, thus representing large volume products needing for a good biodegradability. This study aims to develop new SAPs for baby diapers by combining sodium alginate (SA) and cellulose nanocrystals (CNC) with acrylic acid (AA). The effect of different AA/SA ratios and CNC concentrations in the presence of ammonium persulfate (APS) as an initiator, and <i>N–N-</i>methylene bis-acrylamide (NMBA) as a cross-linker is investigated. We assess morphological and physicochemical properties of the SAPs, as well as their absorption characteristics and rheological properties. The results show that SAPs with AA/SA weight ratio of 70:30 containing 2% w/w CNC have the highest water absorption capacity, i.e., 78.4 g/g in saline solution. These SAPs also demonstrate high retention capacity and better absorption capacity under load than other SAPs. We further optimize the formulation by increasing the neutralization degree of AA and reducing the solid content, reaching an absorption capacity in the salt solution up to 100.08 g/g. Finally, the absorbent core made with fewer amounts of SAPs and fluff pulp led to functional properties superior to those of commercial baby diapers. High polysaccharide content SAPs could contribute to improve diaper sustainability.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Characterization of Sodium Alginate-Based Bio-hybrid Super Absorbent Polymer with High Retention Capacity Suitable for Baby Diapers\",\"authors\":\"Saeed Ismaeilimoghadam, Mehdi Jonoobi, Yahya Hamzeh, Bahareh Azimi, Andrea Mezzetta, Lorenzo Guazzelli, Patrizia Cinelli, Maurizia Seggiani, Serena Danti\",\"doi\":\"10.1007/s10924-024-03297-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to their capacity of water absorption, super absorbent polymers (SAPs) are greatly requested in hygienic applications, thus representing large volume products needing for a good biodegradability. This study aims to develop new SAPs for baby diapers by combining sodium alginate (SA) and cellulose nanocrystals (CNC) with acrylic acid (AA). The effect of different AA/SA ratios and CNC concentrations in the presence of ammonium persulfate (APS) as an initiator, and <i>N–N-</i>methylene bis-acrylamide (NMBA) as a cross-linker is investigated. We assess morphological and physicochemical properties of the SAPs, as well as their absorption characteristics and rheological properties. The results show that SAPs with AA/SA weight ratio of 70:30 containing 2% w/w CNC have the highest water absorption capacity, i.e., 78.4 g/g in saline solution. These SAPs also demonstrate high retention capacity and better absorption capacity under load than other SAPs. We further optimize the formulation by increasing the neutralization degree of AA and reducing the solid content, reaching an absorption capacity in the salt solution up to 100.08 g/g. Finally, the absorbent core made with fewer amounts of SAPs and fluff pulp led to functional properties superior to those of commercial baby diapers. High polysaccharide content SAPs could contribute to improve diaper sustainability.</p></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-024-03297-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03297-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
超强吸水聚合物(SAP)具有强大的吸水能力,因此在卫生应用中需求量很大,是需要良好生物降解性的大容量产品。本研究旨在通过将海藻酸钠(SA)和纤维素纳米晶体(CNC)与丙烯酸(AA)相结合,开发用于婴儿尿布的新型 SAP。研究了在过硫酸铵(APS)作为引发剂和 N-N-亚甲基双丙烯酰胺(NMBA)作为交联剂的条件下,不同 AA/SA 比例和 CNC 浓度的影响。我们评估了 SAP 的形态和理化特性,以及它们的吸收特性和流变特性。结果表明,AA/SA 重量比为 70:30 且含有 2% w/w CNC 的 SAP 具有最高的吸水能力,即在生理盐水溶液中达到 78.4 g/g。与其他 SAP 相比,这些 SAP 还具有较高的保水能力和较好的负载吸水能力。我们通过提高 AA 的中和度和降低固体含量进一步优化了配方,使其在盐溶液中的吸水能力达到 100.08 g/g。最后,使用较少量的 SAP 和绒毛浆制成的吸收芯材具有优于商业婴儿纸尿裤的功能特性。高多糖含量的 SAP 有助于提高纸尿裤的可持续性。
Development and Characterization of Sodium Alginate-Based Bio-hybrid Super Absorbent Polymer with High Retention Capacity Suitable for Baby Diapers
Due to their capacity of water absorption, super absorbent polymers (SAPs) are greatly requested in hygienic applications, thus representing large volume products needing for a good biodegradability. This study aims to develop new SAPs for baby diapers by combining sodium alginate (SA) and cellulose nanocrystals (CNC) with acrylic acid (AA). The effect of different AA/SA ratios and CNC concentrations in the presence of ammonium persulfate (APS) as an initiator, and N–N-methylene bis-acrylamide (NMBA) as a cross-linker is investigated. We assess morphological and physicochemical properties of the SAPs, as well as their absorption characteristics and rheological properties. The results show that SAPs with AA/SA weight ratio of 70:30 containing 2% w/w CNC have the highest water absorption capacity, i.e., 78.4 g/g in saline solution. These SAPs also demonstrate high retention capacity and better absorption capacity under load than other SAPs. We further optimize the formulation by increasing the neutralization degree of AA and reducing the solid content, reaching an absorption capacity in the salt solution up to 100.08 g/g. Finally, the absorbent core made with fewer amounts of SAPs and fluff pulp led to functional properties superior to those of commercial baby diapers. High polysaccharide content SAPs could contribute to improve diaper sustainability.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.