转酮醇酶的生物化学、生物信息学和结构比较以及人类转酮醇酶在酶进化中的位置。

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2024-05-20 DOI:10.1021/acs.biochem.3c00714
Rainier-Numa Georges, Lionel Ballut, Nushin Aghajari, Laurence Hecquet, Franck Charmantray* and Bastien Doumèche*, 
{"title":"转酮醇酶的生物化学、生物信息学和结构比较以及人类转酮醇酶在酶进化中的位置。","authors":"Rainier-Numa Georges,&nbsp;Lionel Ballut,&nbsp;Nushin Aghajari,&nbsp;Laurence Hecquet,&nbsp;Franck Charmantray* and Bastien Doumèche*,&nbsp;","doi":"10.1021/acs.biochem.3c00714","DOIUrl":null,"url":null,"abstract":"<p >Transketolases (TKs) are key enzymes of the pentose phosphate pathway, regulating several other critical pathways in cells. Considering their metabolic importance, TKs are expected to be conserved throughout evolution. However, Tittmann et al. (<i>J Biol Chem</i>, <b>2010</b>, 285(41): 31559–31570) demonstrated that <i>Homo sapiens</i> TK (<i>hs</i>TK) possesses several structural and kinetic differences compared to bacterial TKs. Here, we study 14 TKs from pathogenic bacteria, fungi, and parasites and compare them with <i>hs</i>TK using biochemical, bioinformatic, and structural approaches. For this purpose, six new TK structures are solved by X-ray crystallography, including the TK of <i>Plasmodium falciparum</i>. All of these TKs have the same general fold as bacterial TKs. This comparative study shows that <i>hs</i>TK greatly differs from TKs from pathogens in terms of enzymatic activity, spatial positions of the active site, and monomer–monomer interface residues. An ubiquitous structural pattern is identified in all TKs as a six-residue histidyl crown around the TK cofactor (thiamine pyrophosphate), except for <i>hs</i>TK containing only five residues in the crown. Residue mapping of the monomer–monomer interface and the active site reveals that <i>hs</i>TK contains more unique residues than other TKs. From an evolutionary standpoint, TKs from animals (including <i>H. sapiens</i>) and <i>Schistosoma</i> sp. belong to a distinct structural group from TKs of bacteria, plants, fungi, and parasites, mostly based on a different linker between domains, raising hypotheses regarding evolution and regulation.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochemical, Bioinformatic, and Structural Comparisons of Transketolases and Position of Human Transketolase in the Enzyme Evolution\",\"authors\":\"Rainier-Numa Georges,&nbsp;Lionel Ballut,&nbsp;Nushin Aghajari,&nbsp;Laurence Hecquet,&nbsp;Franck Charmantray* and Bastien Doumèche*,&nbsp;\",\"doi\":\"10.1021/acs.biochem.3c00714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Transketolases (TKs) are key enzymes of the pentose phosphate pathway, regulating several other critical pathways in cells. Considering their metabolic importance, TKs are expected to be conserved throughout evolution. However, Tittmann et al. (<i>J Biol Chem</i>, <b>2010</b>, 285(41): 31559–31570) demonstrated that <i>Homo sapiens</i> TK (<i>hs</i>TK) possesses several structural and kinetic differences compared to bacterial TKs. Here, we study 14 TKs from pathogenic bacteria, fungi, and parasites and compare them with <i>hs</i>TK using biochemical, bioinformatic, and structural approaches. For this purpose, six new TK structures are solved by X-ray crystallography, including the TK of <i>Plasmodium falciparum</i>. All of these TKs have the same general fold as bacterial TKs. This comparative study shows that <i>hs</i>TK greatly differs from TKs from pathogens in terms of enzymatic activity, spatial positions of the active site, and monomer–monomer interface residues. An ubiquitous structural pattern is identified in all TKs as a six-residue histidyl crown around the TK cofactor (thiamine pyrophosphate), except for <i>hs</i>TK containing only five residues in the crown. Residue mapping of the monomer–monomer interface and the active site reveals that <i>hs</i>TK contains more unique residues than other TKs. From an evolutionary standpoint, TKs from animals (including <i>H. sapiens</i>) and <i>Schistosoma</i> sp. belong to a distinct structural group from TKs of bacteria, plants, fungi, and parasites, mostly based on a different linker between domains, raising hypotheses regarding evolution and regulation.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.biochem.3c00714\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.3c00714","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

转酮酶(TKs)是磷酸戊糖途径的关键酶,调节细胞中的其他几种关键途径。考虑到它们在新陈代谢中的重要性,TKs 在整个进化过程中应该是保守的。然而,Tittmann 等人(J Biol Chem, 2010, 285(41):31559-31570)证实,智人 TK(hsTK)与细菌 TK 相比,在结构和动力学上存在一些差异。在这里,我们研究了来自病原细菌、真菌和寄生虫的 14 种 TK,并使用生化、生物信息学和结构方法将它们与 hsTK 进行了比较。为此,我们通过 X 射线晶体学解决了六个新的 TK 结构,其中包括恶性疟原虫的 TK。所有这些 TK 都具有与细菌 TK 相同的一般折叠。这项比较研究表明,hsTK 在酶活性、活性位点的空间位置和单体-单体界面残基方面与病原体的 TK 有很大不同。在所有 TK 中都发现了一种普遍存在的结构模式,即 TK 辅因子(焦磷酸硫胺素)周围有一个六残基组苷酸冠,但 hsTK 的冠中只有五个残基。单体-单体界面和活性位点的残基图谱显示,hsTK 比其他 TK 含有更多独特的残基。从进化的角度来看,动物(包括智人)和血吸虫的 TK 与细菌、植物、真菌和寄生虫的 TK 属于不同的结构组,主要是基于结构域之间不同的连接体,从而提出了有关进化和调控的假说。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biochemical, Bioinformatic, and Structural Comparisons of Transketolases and Position of Human Transketolase in the Enzyme Evolution

Transketolases (TKs) are key enzymes of the pentose phosphate pathway, regulating several other critical pathways in cells. Considering their metabolic importance, TKs are expected to be conserved throughout evolution. However, Tittmann et al. (J Biol Chem, 2010, 285(41): 31559–31570) demonstrated that Homo sapiens TK (hsTK) possesses several structural and kinetic differences compared to bacterial TKs. Here, we study 14 TKs from pathogenic bacteria, fungi, and parasites and compare them with hsTK using biochemical, bioinformatic, and structural approaches. For this purpose, six new TK structures are solved by X-ray crystallography, including the TK of Plasmodium falciparum. All of these TKs have the same general fold as bacterial TKs. This comparative study shows that hsTK greatly differs from TKs from pathogens in terms of enzymatic activity, spatial positions of the active site, and monomer–monomer interface residues. An ubiquitous structural pattern is identified in all TKs as a six-residue histidyl crown around the TK cofactor (thiamine pyrophosphate), except for hsTK containing only five residues in the crown. Residue mapping of the monomer–monomer interface and the active site reveals that hsTK contains more unique residues than other TKs. From an evolutionary standpoint, TKs from animals (including H. sapiens) and Schistosoma sp. belong to a distinct structural group from TKs of bacteria, plants, fungi, and parasites, mostly based on a different linker between domains, raising hypotheses regarding evolution and regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
A Divalent Metal Cation-Metabolite Interaction Model Reveals Cation Buffering and Speciation. Antimalarial Delivery with a Ferritin-Based Protein Cage: A Step toward Developing Smart Therapeutics against Malaria. Probing the Electrostatic Effects of H-Ras Tyrosine 32 Mutations on Intrinsic GTP Hydrolysis Using Vibrational Stark Effect Spectroscopy of a Thiocyanate Probe. Structural and Functional Characterization of New Lipid Transfer Proteins with Chitin-Binding Properties: Insights from Protein Structure Prediction, Molecular Docking, and Antifungal Activity. Implication of Molecular Constraints Facilitating the Functional Evolution of Pseudomonas aeruginosa KPR2 into a Versatile α-Keto-Acid Reductase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1