{"title":"当协变量引起的亚组规模具有信息量时,测试协变量的边际效应。","authors":"Samuel Anyaso-Samuel, Somnath Datta","doi":"10.1177/09622802241254196","DOIUrl":null,"url":null,"abstract":"<p><p>In many cluster-correlated data analyses, informative cluster size poses a challenge that can potentially introduce bias in statistical analyses. Different methodologies have been introduced in statistical literature to address this bias. In this study, we consider a complex form of informativeness where the number of observations corresponding to latent levels of a unit-level continuous covariate within a cluster is associated with the response variable. This type of informativeness has not been explored in prior research. We present a novel test statistic designed to evaluate the effect of the continuous covariate while accounting for the presence of informativeness. The covariate induces a continuum of latent subgroups within the clusters, and our test statistic is formulated by aggregating values from an established statistic that accounts for informative subgroup sizes when comparing group-specific marginal distributions. Through carefully designed simulations, we compare our test with four traditional methods commonly employed in the analysis of cluster-correlated data. Only our test maintains the size across all data-generating scenarios with informativeness. We illustrate the proposed method to test for marginal associations in periodontal data with this distinctive form of informativeness.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1264-1277"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing for marginal covariate effect when the subgroup size induced by the covariate is informative.\",\"authors\":\"Samuel Anyaso-Samuel, Somnath Datta\",\"doi\":\"10.1177/09622802241254196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In many cluster-correlated data analyses, informative cluster size poses a challenge that can potentially introduce bias in statistical analyses. Different methodologies have been introduced in statistical literature to address this bias. In this study, we consider a complex form of informativeness where the number of observations corresponding to latent levels of a unit-level continuous covariate within a cluster is associated with the response variable. This type of informativeness has not been explored in prior research. We present a novel test statistic designed to evaluate the effect of the continuous covariate while accounting for the presence of informativeness. The covariate induces a continuum of latent subgroups within the clusters, and our test statistic is formulated by aggregating values from an established statistic that accounts for informative subgroup sizes when comparing group-specific marginal distributions. Through carefully designed simulations, we compare our test with four traditional methods commonly employed in the analysis of cluster-correlated data. Only our test maintains the size across all data-generating scenarios with informativeness. We illustrate the proposed method to test for marginal associations in periodontal data with this distinctive form of informativeness.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"1264-1277\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241254196\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241254196","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Testing for marginal covariate effect when the subgroup size induced by the covariate is informative.
In many cluster-correlated data analyses, informative cluster size poses a challenge that can potentially introduce bias in statistical analyses. Different methodologies have been introduced in statistical literature to address this bias. In this study, we consider a complex form of informativeness where the number of observations corresponding to latent levels of a unit-level continuous covariate within a cluster is associated with the response variable. This type of informativeness has not been explored in prior research. We present a novel test statistic designed to evaluate the effect of the continuous covariate while accounting for the presence of informativeness. The covariate induces a continuum of latent subgroups within the clusters, and our test statistic is formulated by aggregating values from an established statistic that accounts for informative subgroup sizes when comparing group-specific marginal distributions. Through carefully designed simulations, we compare our test with four traditional methods commonly employed in the analysis of cluster-correlated data. Only our test maintains the size across all data-generating scenarios with informativeness. We illustrate the proposed method to test for marginal associations in periodontal data with this distinctive form of informativeness.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)