{"title":"HES4 控制氧化还原平衡,支持嘧啶合成和肿瘤生长","authors":"","doi":"10.1038/s41594-024-01310-w","DOIUrl":null,"url":null,"abstract":"NAD(H) redox homeostasis has a fundamental role in cellular metabolism. We screened for potential modulators of NAD(H) using a genome-scale RNA interference (RNAi) approach combined with SoNar, a high-performance sensor that is sensitive to the redox state of NAD(H). Our analysis identified HES4 as a negative regulator of the NADH/NAD+ ratio that influences pyrimidine biosynthesis and exerts a potent oncogenic effect.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 9","pages":"1315-1316"},"PeriodicalIF":12.5000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HES4 controls redox balance and supports pyrimidine synthesis and tumor growth\",\"authors\":\"\",\"doi\":\"10.1038/s41594-024-01310-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NAD(H) redox homeostasis has a fundamental role in cellular metabolism. We screened for potential modulators of NAD(H) using a genome-scale RNA interference (RNAi) approach combined with SoNar, a high-performance sensor that is sensitive to the redox state of NAD(H). Our analysis identified HES4 as a negative regulator of the NADH/NAD+ ratio that influences pyrimidine biosynthesis and exerts a potent oncogenic effect.\",\"PeriodicalId\":49141,\"journal\":{\"name\":\"Nature Structural & Molecular Biology\",\"volume\":\"31 9\",\"pages\":\"1315-1316\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41594-024-01310-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01310-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
HES4 controls redox balance and supports pyrimidine synthesis and tumor growth
NAD(H) redox homeostasis has a fundamental role in cellular metabolism. We screened for potential modulators of NAD(H) using a genome-scale RNA interference (RNAi) approach combined with SoNar, a high-performance sensor that is sensitive to the redox state of NAD(H). Our analysis identified HES4 as a negative regulator of the NADH/NAD+ ratio that influences pyrimidine biosynthesis and exerts a potent oncogenic effect.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.