{"title":"一种来自 Pedobacter sp.的新型 β-半乳糖苷酶的生化特征,该酶在低乳糖浓度下具有很强的转糖基化活性。","authors":"Miao Miao, Yuchen Yao, Qiaojuan Yan, Zhengqiang Jiang, Guangming He, Shaoqing Yang","doi":"10.1007/s12223-024-01169-w","DOIUrl":null,"url":null,"abstract":"<p><p>A novel β-galactosidase gene (PbBgal35A) from Pedobacter sp. CAUYN2 was cloned and expressed in Escherichia coli. The gene had an open reading frame of 1917 bp, encoding 638 amino acids with a predicted molecular mass of 62.3 kDa. The deduced amino acid sequence of the gene shared the highest identity of 41% with a glycoside hydrolase family 35 β-galactosidase from Xanthomonas campestris pv. campestris (AAP86763.1). The recombinant β-galactosidase (PbBgal35A) was purified to homogeneity with a specific activity of 65.9 U/mg. PbBgal35A was optimally active at pH 5.0 and 50 °C, respectively, and it was stable within pH 4.5‒7.0 and up to 45 °C. PbBgal35A efficiently synthesized galacto-oligosaccharides from lactose with a conversion ratio of 32% (w/w) and fructosyl-galacto-oligosaccharides from lactulose with a conversion ratio of 21.9% (w/w). Moreover, the enzyme catalyzed the synthesis of galacto-oligosaccharides from low-content lactose in fresh milk, and the GOS conversion ratios of 17.1% (w/w) and 7.8% (w/w) were obtained when the reactions were performed at 45 and 4 °C, respectively. These properties make PbBgal35A an ideal candidate for commercial use in the manufacturing of GOS-enriched dairy products.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochemical characterization of a novel β-galactosidase from Pedobacter sp. with strong transglycosylation activity at low lactose concentration.\",\"authors\":\"Miao Miao, Yuchen Yao, Qiaojuan Yan, Zhengqiang Jiang, Guangming He, Shaoqing Yang\",\"doi\":\"10.1007/s12223-024-01169-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel β-galactosidase gene (PbBgal35A) from Pedobacter sp. CAUYN2 was cloned and expressed in Escherichia coli. The gene had an open reading frame of 1917 bp, encoding 638 amino acids with a predicted molecular mass of 62.3 kDa. The deduced amino acid sequence of the gene shared the highest identity of 41% with a glycoside hydrolase family 35 β-galactosidase from Xanthomonas campestris pv. campestris (AAP86763.1). The recombinant β-galactosidase (PbBgal35A) was purified to homogeneity with a specific activity of 65.9 U/mg. PbBgal35A was optimally active at pH 5.0 and 50 °C, respectively, and it was stable within pH 4.5‒7.0 and up to 45 °C. PbBgal35A efficiently synthesized galacto-oligosaccharides from lactose with a conversion ratio of 32% (w/w) and fructosyl-galacto-oligosaccharides from lactulose with a conversion ratio of 21.9% (w/w). Moreover, the enzyme catalyzed the synthesis of galacto-oligosaccharides from low-content lactose in fresh milk, and the GOS conversion ratios of 17.1% (w/w) and 7.8% (w/w) were obtained when the reactions were performed at 45 and 4 °C, respectively. These properties make PbBgal35A an ideal candidate for commercial use in the manufacturing of GOS-enriched dairy products.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12223-024-01169-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12223-024-01169-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Biochemical characterization of a novel β-galactosidase from Pedobacter sp. with strong transglycosylation activity at low lactose concentration.
A novel β-galactosidase gene (PbBgal35A) from Pedobacter sp. CAUYN2 was cloned and expressed in Escherichia coli. The gene had an open reading frame of 1917 bp, encoding 638 amino acids with a predicted molecular mass of 62.3 kDa. The deduced amino acid sequence of the gene shared the highest identity of 41% with a glycoside hydrolase family 35 β-galactosidase from Xanthomonas campestris pv. campestris (AAP86763.1). The recombinant β-galactosidase (PbBgal35A) was purified to homogeneity with a specific activity of 65.9 U/mg. PbBgal35A was optimally active at pH 5.0 and 50 °C, respectively, and it was stable within pH 4.5‒7.0 and up to 45 °C. PbBgal35A efficiently synthesized galacto-oligosaccharides from lactose with a conversion ratio of 32% (w/w) and fructosyl-galacto-oligosaccharides from lactulose with a conversion ratio of 21.9% (w/w). Moreover, the enzyme catalyzed the synthesis of galacto-oligosaccharides from low-content lactose in fresh milk, and the GOS conversion ratios of 17.1% (w/w) and 7.8% (w/w) were obtained when the reactions were performed at 45 and 4 °C, respectively. These properties make PbBgal35A an ideal candidate for commercial use in the manufacturing of GOS-enriched dairy products.