通过多模态自监督深度学习连接帕金森病进展中的成像和临床评分

International journal of neural systems Pub Date : 2024-08-01 Epub Date: 2024-05-22 DOI:10.1142/S0129065724500436
Francisco J Martinez-Murcia, Juan Eloy Arco, Carmen Jimenez-Mesa, Fermin Segovia, Ignacio A Illan, Javier Ramirez, Juan Manuel Gorriz
{"title":"通过多模态自监督深度学习连接帕金森病进展中的成像和临床评分","authors":"Francisco J Martinez-Murcia, Juan Eloy Arco, Carmen Jimenez-Mesa, Fermin Segovia, Ignacio A Illan, Javier Ramirez, Juan Manuel Gorriz","doi":"10.1142/S0129065724500436","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases pose a formidable challenge to medical research, demanding a nuanced understanding of their progressive nature. In this regard, latent generative models can effectively be used in a data-driven modeling of different dimensions of neurodegeneration, framed within the context of the manifold hypothesis. This paper proposes a joint framework for a multi-modal, common latent generative model to address the need for a more comprehensive understanding of the neurodegenerative landscape in the context of Parkinson's disease (PD). The proposed architecture uses coupled variational autoencoders (VAEs) to joint model a common latent space to both neuroimaging and clinical data from the Parkinson's Progression Markers Initiative (PPMI). Alternative loss functions, different normalization procedures, and the interpretability and explainability of latent generative models are addressed, leading to a model that was able to predict clinical symptomatology in the test set, as measured by the unified Parkinson's disease rating scale (UPDRS), with <i>R2</i> up to 0.86 for same-modality and 0.441 cross-modality (using solely neuroimaging). The findings provide a foundation for further advancements in the field of clinical research and practice, with potential applications in decision-making processes for PD. The study also highlights the limitations and capabilities of the proposed model, emphasizing its direct interpretability and potential impact on understanding and interpreting neuroimaging patterns associated with PD symptomatology.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450043"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging Imaging and Clinical Scores in Parkinson's Progression via Multimodal Self-Supervised Deep Learning.\",\"authors\":\"Francisco J Martinez-Murcia, Juan Eloy Arco, Carmen Jimenez-Mesa, Fermin Segovia, Ignacio A Illan, Javier Ramirez, Juan Manuel Gorriz\",\"doi\":\"10.1142/S0129065724500436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurodegenerative diseases pose a formidable challenge to medical research, demanding a nuanced understanding of their progressive nature. In this regard, latent generative models can effectively be used in a data-driven modeling of different dimensions of neurodegeneration, framed within the context of the manifold hypothesis. This paper proposes a joint framework for a multi-modal, common latent generative model to address the need for a more comprehensive understanding of the neurodegenerative landscape in the context of Parkinson's disease (PD). The proposed architecture uses coupled variational autoencoders (VAEs) to joint model a common latent space to both neuroimaging and clinical data from the Parkinson's Progression Markers Initiative (PPMI). Alternative loss functions, different normalization procedures, and the interpretability and explainability of latent generative models are addressed, leading to a model that was able to predict clinical symptomatology in the test set, as measured by the unified Parkinson's disease rating scale (UPDRS), with <i>R2</i> up to 0.86 for same-modality and 0.441 cross-modality (using solely neuroimaging). The findings provide a foundation for further advancements in the field of clinical research and practice, with potential applications in decision-making processes for PD. The study also highlights the limitations and capabilities of the proposed model, emphasizing its direct interpretability and potential impact on understanding and interpreting neuroimaging patterns associated with PD symptomatology.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2450043\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065724500436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065724500436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经退行性疾病对医学研究提出了严峻的挑战,需要对其渐进性有细致入微的了解。在这方面,潜在生成模型可以有效地用于神经退行性疾病不同维度的数据驱动建模,并以流形假说为框架。本文提出了一个多模态、通用潜在生成模型的联合框架,以满足更全面地了解帕金森病(PD)神经退行性病变的需要。所提议的架构使用耦合变异自动编码器(VAE)对帕金森病进展标志物倡议(PPMI)的神经影像和临床数据的共同潜空间进行联合建模。该模型能够预测测试集中的临床症状,以统一帕金森病评分量表(UPDRS)为衡量标准,同模态的R2高达0.86,跨模态(仅使用神经影像)的R2高达0.441。研究结果为临床研究和实践领域的进一步发展奠定了基础,并有可能应用于帕金森病的决策过程。该研究还强调了所提模型的局限性和能力,强调了其直接可解释性以及对理解和解释与帕金森病症状相关的神经影像模式的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bridging Imaging and Clinical Scores in Parkinson's Progression via Multimodal Self-Supervised Deep Learning.

Neurodegenerative diseases pose a formidable challenge to medical research, demanding a nuanced understanding of their progressive nature. In this regard, latent generative models can effectively be used in a data-driven modeling of different dimensions of neurodegeneration, framed within the context of the manifold hypothesis. This paper proposes a joint framework for a multi-modal, common latent generative model to address the need for a more comprehensive understanding of the neurodegenerative landscape in the context of Parkinson's disease (PD). The proposed architecture uses coupled variational autoencoders (VAEs) to joint model a common latent space to both neuroimaging and clinical data from the Parkinson's Progression Markers Initiative (PPMI). Alternative loss functions, different normalization procedures, and the interpretability and explainability of latent generative models are addressed, leading to a model that was able to predict clinical symptomatology in the test set, as measured by the unified Parkinson's disease rating scale (UPDRS), with R2 up to 0.86 for same-modality and 0.441 cross-modality (using solely neuroimaging). The findings provide a foundation for further advancements in the field of clinical research and practice, with potential applications in decision-making processes for PD. The study also highlights the limitations and capabilities of the proposed model, emphasizing its direct interpretability and potential impact on understanding and interpreting neuroimaging patterns associated with PD symptomatology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Label Zero-Shot Learning Via Contrastive Label-Based Attention. Unraveling the Differential Efficiency of Dorsal and Ventral Pathways in Visual Semantic Decoding. Neural Memory State Space Models for Medical Image Segmentation. Spatially Selective Retinal Ganglion Cell Activation Using Low Invasive Extraocular Temporal Interference Stimulation. Decoding Continuous Tracking Eye Movements from Cortical Spiking Activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1