利用尸体股骨进行可注射双相磷酸钙骨水泥增强股骨近端抗旋转钉(PFNA)治疗两处转子间骨折的可行性生物力学研究。

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2024-06-13 DOI:10.1088/2057-1976/ad4e3c
Ponthep Tangkanjanavelukul, Paritat Thaitalay, Sawitri Srisuwan, Pongpayap Petchwisai, Pornsak Thasanaraphan, Yotakarn Saramas, Kittiphong Nimarkorn, Woranat Warojananulak, Chaosuan Kanchanomai, Sirirat Tubsungnoen Rattanachan
{"title":"利用尸体股骨进行可注射双相磷酸钙骨水泥增强股骨近端抗旋转钉(PFNA)治疗两处转子间骨折的可行性生物力学研究。","authors":"Ponthep Tangkanjanavelukul, Paritat Thaitalay, Sawitri Srisuwan, Pongpayap Petchwisai, Pornsak Thasanaraphan, Yotakarn Saramas, Kittiphong Nimarkorn, Woranat Warojananulak, Chaosuan Kanchanomai, Sirirat Tubsungnoen Rattanachan","doi":"10.1088/2057-1976/ad4e3c","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the feasibility of the femoral bone after fixation using biphasic calcium phosphate cement-augmentation of the proximal femoral nail antirotation (PFNA) compared with PFNA without cement. This study presented to compare the stiffness, fatigue testing, and compressive strength between stable (AO31-A2.1) and unstable (AO31-A3.3) intertrochanteric fractures treated by cement augmented PFNA of the cadaveric femoral. Biphasic calcium phosphate cement was injected to align and compatible with PFNA and the reconstructive procedure was monitored the cement placement using x-ray imaging during operation. The testing demonstrated that the cement could be injected through a small needle (13 G, 16 cm length, 1.8 mm inner diameter) within a suitable operating time. The feasibility study of the biomechanical testing was divided into three tests: stiffness test, fatigue cyclic load, and compression test. The results showed that the cement-augmented specimens exhibited higher stiffness than the control specimens without cement. The cement-augmented specimens also showed lower strain energy during the fatigue test, resulting in higher compressive strength (4730.7 N) compared to the control specimens (3857.4 N). There is a correlation between BMD and fracture load and the increase in compression load of the cement-augmented femoral compared to the controls as well as an increase in strain energy of fatigue cyclic testing was found. Biphasic calcium phosphate cement-augmented of the PFNA biomechanically enhanced the cut-out resistance in intertrochanteric fracture. This procedure is especially efficient for unstable intertrochanteric fracture suggesting the potential benefits of using biphasic calcium phosphate cement in medical applications.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility biomechanical study of injectable Biphasic Calcium Phosphate bone cement augmentation of the proximal femoral nail antirotation (PFNA) for the treatment of two intertrochanteric fractures using cadaveric femur.\",\"authors\":\"Ponthep Tangkanjanavelukul, Paritat Thaitalay, Sawitri Srisuwan, Pongpayap Petchwisai, Pornsak Thasanaraphan, Yotakarn Saramas, Kittiphong Nimarkorn, Woranat Warojananulak, Chaosuan Kanchanomai, Sirirat Tubsungnoen Rattanachan\",\"doi\":\"10.1088/2057-1976/ad4e3c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluated the feasibility of the femoral bone after fixation using biphasic calcium phosphate cement-augmentation of the proximal femoral nail antirotation (PFNA) compared with PFNA without cement. This study presented to compare the stiffness, fatigue testing, and compressive strength between stable (AO31-A2.1) and unstable (AO31-A3.3) intertrochanteric fractures treated by cement augmented PFNA of the cadaveric femoral. Biphasic calcium phosphate cement was injected to align and compatible with PFNA and the reconstructive procedure was monitored the cement placement using x-ray imaging during operation. The testing demonstrated that the cement could be injected through a small needle (13 G, 16 cm length, 1.8 mm inner diameter) within a suitable operating time. The feasibility study of the biomechanical testing was divided into three tests: stiffness test, fatigue cyclic load, and compression test. The results showed that the cement-augmented specimens exhibited higher stiffness than the control specimens without cement. The cement-augmented specimens also showed lower strain energy during the fatigue test, resulting in higher compressive strength (4730.7 N) compared to the control specimens (3857.4 N). There is a correlation between BMD and fracture load and the increase in compression load of the cement-augmented femoral compared to the controls as well as an increase in strain energy of fatigue cyclic testing was found. Biphasic calcium phosphate cement-augmented of the PFNA biomechanically enhanced the cut-out resistance in intertrochanteric fracture. This procedure is especially efficient for unstable intertrochanteric fracture suggesting the potential benefits of using biphasic calcium phosphate cement in medical applications.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad4e3c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad4e3c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了使用双相磷酸钙骨水泥固定股骨近端抗旋转钉(PFNA)与不使用骨水泥固定股骨近端抗旋转钉(PFNA)后股骨头的可行性。本研究对尸体股骨的稳定型(AO31-A2.1)和不稳定型(AO31-A3.3)转子间骨折采用骨水泥增强 PFNA 治疗后的硬度、疲劳测试和抗压强度进行了比较。注射双相磷酸钙骨水泥,使其与 PFNA 对齐和兼容,并在手术过程中使用 X 射线成像监控骨水泥的置入情况。测试表明,骨水泥可在适当的手术时间内通过小针(13G,16 厘米长,1.8 毫米内径)注入。生物力学测试的可行性研究分为三项测试:刚度测试、疲劳循环载荷和压缩测试。结果表明,与未添加水泥的对照试样相比,添加水泥的试样具有更高的刚度。在疲劳试验中,水泥增强试样也显示出较低的应变能,从而使抗压强度(4730.7 牛顿)高于对照试样(3857.4 牛顿)。BMD 与骨折载荷之间存在相关性,与对照组相比,骨水泥增强股骨的压缩载荷增加了,疲劳循环测试的应变能也增加了。PFNA的双相磷酸钙骨水泥增强了转子间骨折的切口阻力。这种方法尤其适用于不稳定的转子间骨折,这表明在医疗应用中使用双相磷酸钙水泥具有潜在的益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feasibility biomechanical study of injectable Biphasic Calcium Phosphate bone cement augmentation of the proximal femoral nail antirotation (PFNA) for the treatment of two intertrochanteric fractures using cadaveric femur.

This study evaluated the feasibility of the femoral bone after fixation using biphasic calcium phosphate cement-augmentation of the proximal femoral nail antirotation (PFNA) compared with PFNA without cement. This study presented to compare the stiffness, fatigue testing, and compressive strength between stable (AO31-A2.1) and unstable (AO31-A3.3) intertrochanteric fractures treated by cement augmented PFNA of the cadaveric femoral. Biphasic calcium phosphate cement was injected to align and compatible with PFNA and the reconstructive procedure was monitored the cement placement using x-ray imaging during operation. The testing demonstrated that the cement could be injected through a small needle (13 G, 16 cm length, 1.8 mm inner diameter) within a suitable operating time. The feasibility study of the biomechanical testing was divided into three tests: stiffness test, fatigue cyclic load, and compression test. The results showed that the cement-augmented specimens exhibited higher stiffness than the control specimens without cement. The cement-augmented specimens also showed lower strain energy during the fatigue test, resulting in higher compressive strength (4730.7 N) compared to the control specimens (3857.4 N). There is a correlation between BMD and fracture load and the increase in compression load of the cement-augmented femoral compared to the controls as well as an increase in strain energy of fatigue cyclic testing was found. Biphasic calcium phosphate cement-augmented of the PFNA biomechanically enhanced the cut-out resistance in intertrochanteric fracture. This procedure is especially efficient for unstable intertrochanteric fracture suggesting the potential benefits of using biphasic calcium phosphate cement in medical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Innovative 3D bioprinting approaches for advancing brain science and medicine: a literature review. Assessing Anticancer Properties of PEGylated Platinum Nanoparticles on Human Breast Cancer Cell lines using in-vitro Assays. Prediction of directional solidification in freeze casting of biomaterial scaffolds using physics-informed neural networks. Synthetic CT generation from CBCT based on structural constraint cycle-EEM-GAN Detection of Invasive Ductal Carcinoma by Electrical Impedance Spectroscopy Implementing Gaussian Relaxation-Time Distribution (EIS-GRTD).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1