高温胁迫对两个枣树品种光合作用相关基因表达的影响

Plant signaling & behavior Pub Date : 2024-12-31 Epub Date: 2024-05-22 DOI:10.1080/15592324.2024.2357367
Lei Yang, Xiaojuan Yang, Bingqi Shen, Juan Jin, Lili Li, Dingyu Fan, Subina Xiaokelaiti, Qing Hao, Jianxin Niu
{"title":"高温胁迫对两个枣树品种光合作用相关基因表达的影响","authors":"Lei Yang, Xiaojuan Yang, Bingqi Shen, Juan Jin, Lili Li, Dingyu Fan, Subina Xiaokelaiti, Qing Hao, Jianxin Niu","doi":"10.1080/15592324.2024.2357367","DOIUrl":null,"url":null,"abstract":"<p><p>Elevated temperatures critically impact crop growth, development, and yield, with photosynthesis being the most temperature-sensitive physiological process in plants. This study focused on assessing the photosynthetic response and genetic adaptation of two different heat-resistant jujube varieties 'Junzao' (J) and 'Fucuimi' (F), to high-temperature stress (42°C Day/30°C Night). Comparative analyses of leaf photosynthetic indices, microstructural changes, and transcriptome sequencing were conducted. Results indicated superior high-temperature adaptability in F, evidenced by alterations in leaf stomatal behavior - particularly in J, where defense cells exhibited significant water loss, shrinkage, and reduced stomatal opening, alongside a marked increase in stomatal density. Through transcriptome sequencing 13,884 differentially expressed genes (DEGs) were identified, significantly enriched in pathways related to plant-pathogen interactions, amino acid biosynthesis, starch and sucrose metabolism, and carbohydrate metabolism. Key findings include the identification of photosynthetic pathway related DEGs and HSFA1s as central regulators of thermal morphogenesis and heat stress response. Revealing their upregulation in F and downregulation in J. The results indicate that these genes play a crucial role in improving heat tolerance in F. This study unveils critical photosynthetic genes involved in heat stress, providing a theoretical foundation for comprehending the molecular mechanisms underlying jujube heat tolerance.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139005/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of high-temperature stress on gene expression related to photosynthesis in two jujube (<i>Ziziphus jujuba</i> Mill.) varieties.\",\"authors\":\"Lei Yang, Xiaojuan Yang, Bingqi Shen, Juan Jin, Lili Li, Dingyu Fan, Subina Xiaokelaiti, Qing Hao, Jianxin Niu\",\"doi\":\"10.1080/15592324.2024.2357367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Elevated temperatures critically impact crop growth, development, and yield, with photosynthesis being the most temperature-sensitive physiological process in plants. This study focused on assessing the photosynthetic response and genetic adaptation of two different heat-resistant jujube varieties 'Junzao' (J) and 'Fucuimi' (F), to high-temperature stress (42°C Day/30°C Night). Comparative analyses of leaf photosynthetic indices, microstructural changes, and transcriptome sequencing were conducted. Results indicated superior high-temperature adaptability in F, evidenced by alterations in leaf stomatal behavior - particularly in J, where defense cells exhibited significant water loss, shrinkage, and reduced stomatal opening, alongside a marked increase in stomatal density. Through transcriptome sequencing 13,884 differentially expressed genes (DEGs) were identified, significantly enriched in pathways related to plant-pathogen interactions, amino acid biosynthesis, starch and sucrose metabolism, and carbohydrate metabolism. Key findings include the identification of photosynthetic pathway related DEGs and HSFA1s as central regulators of thermal morphogenesis and heat stress response. Revealing their upregulation in F and downregulation in J. The results indicate that these genes play a crucial role in improving heat tolerance in F. This study unveils critical photosynthetic genes involved in heat stress, providing a theoretical foundation for comprehending the molecular mechanisms underlying jujube heat tolerance.</p>\",\"PeriodicalId\":94172,\"journal\":{\"name\":\"Plant signaling & behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139005/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant signaling & behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2024.2357367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2024.2357367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

温度升高对农作物的生长、发育和产量有着至关重要的影响,而光合作用是植物对温度最敏感的生理过程。本研究重点评估了两个不同耐热枣品种'君枣'(J)和'富贵米'(F)对高温胁迫(昼夜42°C/30°C)的光合响应和遗传适应性。对叶片光合指数、微观结构变化和转录组测序进行了比较分析。结果表明,F 的高温适应能力更强,表现为叶片气孔行为的改变--尤其是在 J 中,防御细胞表现出明显的失水、收缩和气孔开放减少,同时气孔密度明显增加。通过转录组测序,确定了 13,884 个差异表达基因 (DEG),这些基因在与植物-病原体相互作用、氨基酸生物合成、淀粉和蔗糖代谢以及碳水化合物代谢相关的通路中显著富集。主要研究结果包括发现光合作用通路相关 DEGs 和 HSFA1s 是热形态发生和热胁迫响应的核心调控因子。该研究揭示了参与热胁迫的关键光合基因,为理解红枣耐热性的分子机制提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of high-temperature stress on gene expression related to photosynthesis in two jujube (Ziziphus jujuba Mill.) varieties.

Elevated temperatures critically impact crop growth, development, and yield, with photosynthesis being the most temperature-sensitive physiological process in plants. This study focused on assessing the photosynthetic response and genetic adaptation of two different heat-resistant jujube varieties 'Junzao' (J) and 'Fucuimi' (F), to high-temperature stress (42°C Day/30°C Night). Comparative analyses of leaf photosynthetic indices, microstructural changes, and transcriptome sequencing were conducted. Results indicated superior high-temperature adaptability in F, evidenced by alterations in leaf stomatal behavior - particularly in J, where defense cells exhibited significant water loss, shrinkage, and reduced stomatal opening, alongside a marked increase in stomatal density. Through transcriptome sequencing 13,884 differentially expressed genes (DEGs) were identified, significantly enriched in pathways related to plant-pathogen interactions, amino acid biosynthesis, starch and sucrose metabolism, and carbohydrate metabolism. Key findings include the identification of photosynthetic pathway related DEGs and HSFA1s as central regulators of thermal morphogenesis and heat stress response. Revealing their upregulation in F and downregulation in J. The results indicate that these genes play a crucial role in improving heat tolerance in F. This study unveils critical photosynthetic genes involved in heat stress, providing a theoretical foundation for comprehending the molecular mechanisms underlying jujube heat tolerance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Response of photosynthesis and electrical reactions of wheat plants upon the action of magnetic fields in the Schumann resonance frequency band. Reciprocal modulation of responses to nitrate starvation and hypoxia in roots and leaves of Arabidopsis thaliana. Cold priming on pathogen susceptibility in the Arabidopsis eds1 mutant background requires a functional stromal Ascorbate Peroxidase. Editorial: plant-microbial symbiosis toward sustainable food security. Nitric oxide in plants: an insight on redox activity and responses toward abiotic stress signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1