环境金属和类金属污染物对植物和人类健康的影响:探索纳米修复方法。

Priyadarshani Rajput, Abhishek Singh, Shreni Agrawal, Karen Ghazaryan, Vishnu D Rajput, Hasmik Movsesyan, Saglara Mandzhieva, Tatiana Minkina, Athanasios Alexiou
{"title":"环境金属和类金属污染物对植物和人类健康的影响:探索纳米修复方法。","authors":"Priyadarshani Rajput, Abhishek Singh, Shreni Agrawal, Karen Ghazaryan, Vishnu D Rajput, Hasmik Movsesyan, Saglara Mandzhieva, Tatiana Minkina, Athanasios Alexiou","doi":"10.1007/s44154-024-00156-y","DOIUrl":null,"url":null,"abstract":"<p><p>Metal and metalloid pollutants severely threatens environmental ecosystems and human health, necessitating effective remediation strategies. Nanoparticle (NPs)-based approaches have gained significant attention as promising solutions for efficient removing heavy metals from various environmental matrices. The present review is focused on green synthesized NPs-mediated remediation such as the implementation of iron, carbon-based nanomaterials, metal oxides, and bio-based NPs. The review also explores the mechanisms of NPs interactions with heavy metals, including adsorption, precipitation, and redox reactions. Critical factors influencing the remediation efficiency, such as NPs size, surface charge, and composition, are systematically examined. Furthermore, the environmental fate, transport, and potential risks associated with the application of NPs are critically evaluated. The review also highlights various sources of metal and metalloid pollutants and their impact on human health and translocation in plant tissues. Prospects and challenges in translating NPs-based remediation from laboratory research to real-world applications are proposed. The current work will be helpful to direct future research endeavors and promote the sustainable implementation of metal and metalloid elimination.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"27"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111642/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of environmental metal and metalloid pollutants on plants and human health: exploring nano-remediation approach.\",\"authors\":\"Priyadarshani Rajput, Abhishek Singh, Shreni Agrawal, Karen Ghazaryan, Vishnu D Rajput, Hasmik Movsesyan, Saglara Mandzhieva, Tatiana Minkina, Athanasios Alexiou\",\"doi\":\"10.1007/s44154-024-00156-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metal and metalloid pollutants severely threatens environmental ecosystems and human health, necessitating effective remediation strategies. Nanoparticle (NPs)-based approaches have gained significant attention as promising solutions for efficient removing heavy metals from various environmental matrices. The present review is focused on green synthesized NPs-mediated remediation such as the implementation of iron, carbon-based nanomaterials, metal oxides, and bio-based NPs. The review also explores the mechanisms of NPs interactions with heavy metals, including adsorption, precipitation, and redox reactions. Critical factors influencing the remediation efficiency, such as NPs size, surface charge, and composition, are systematically examined. Furthermore, the environmental fate, transport, and potential risks associated with the application of NPs are critically evaluated. The review also highlights various sources of metal and metalloid pollutants and their impact on human health and translocation in plant tissues. Prospects and challenges in translating NPs-based remediation from laboratory research to real-world applications are proposed. The current work will be helpful to direct future research endeavors and promote the sustainable implementation of metal and metalloid elimination.</p>\",\"PeriodicalId\":74874,\"journal\":{\"name\":\"Stress biology\",\"volume\":\"4 1\",\"pages\":\"27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111642/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stress biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44154-024-00156-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-024-00156-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属和类金属污染物严重威胁环境生态系统和人类健康,因此必须采取有效的修复策略。基于纳米粒子(NPs)的方法作为从各种环境基质中有效去除重金属的有前途的解决方案,受到了广泛关注。本综述侧重于绿色合成 NPs 介导的修复,如铁、碳基纳米材料、金属氧化物和生物基 NPs 的应用。综述还探讨了 NPs 与重金属的相互作用机制,包括吸附、沉淀和氧化还原反应。系统研究了影响修复效率的关键因素,如 NPs 尺寸、表面电荷和成分。此外,还对与应用 NPs 相关的环境归宿、迁移和潜在风险进行了严格评估。综述还重点介绍了金属和类金属污染物的各种来源及其对人类健康的影响和在植物组织中的迁移。还提出了将基于 NPs 的补救措施从实验室研究转化为实际应用的前景和挑战。目前的工作将有助于指导未来的研究工作,并促进消除金属和类金属的可持续实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of environmental metal and metalloid pollutants on plants and human health: exploring nano-remediation approach.

Metal and metalloid pollutants severely threatens environmental ecosystems and human health, necessitating effective remediation strategies. Nanoparticle (NPs)-based approaches have gained significant attention as promising solutions for efficient removing heavy metals from various environmental matrices. The present review is focused on green synthesized NPs-mediated remediation such as the implementation of iron, carbon-based nanomaterials, metal oxides, and bio-based NPs. The review also explores the mechanisms of NPs interactions with heavy metals, including adsorption, precipitation, and redox reactions. Critical factors influencing the remediation efficiency, such as NPs size, surface charge, and composition, are systematically examined. Furthermore, the environmental fate, transport, and potential risks associated with the application of NPs are critically evaluated. The review also highlights various sources of metal and metalloid pollutants and their impact on human health and translocation in plant tissues. Prospects and challenges in translating NPs-based remediation from laboratory research to real-world applications are proposed. The current work will be helpful to direct future research endeavors and promote the sustainable implementation of metal and metalloid elimination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Candidate genes associated with low temperature tolerance in cucumber adult plants identified by combining GWAS & QTL mapping. Novel endophytic fungus Leptosphaeria sp. strain T-2 improves plant growth and environmental stress tolerance. Utilizing effector-triggered immunity (ETI) as a robust priming agent to protect plants from pathogens. CsLAC4, regulated by CsmiR397a, confers drought tolerance to the tea plant by enhancing lignin biosynthesis. Correction: Zinc metalloprotease FgM35, which targets the wheat zinc-binding protein TaZnBP, contributes to the virulence of Fusarium graminearum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1