Robert F Sidonio, Anan Lu, Sarah Hale, Jorge Caicedo, Mike Bullano, Shan Xing
{"title":"利用机器学习算法和真实世界数据早期诊断 von Willebrand 疾病患者。","authors":"Robert F Sidonio, Anan Lu, Sarah Hale, Jorge Caicedo, Mike Bullano, Shan Xing","doi":"10.1080/17474086.2024.2354925","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Von Willebrand disease (VWD) is underdiagnosed, often delaying treatment. VWD claims coding is limited and includes no severity qualifiers; improved identification methods for VWD are needed. The aim of this study is to identify and characterize undiagnosed symptomatic persons with VWD in the US from medical insurance claims using predictive machine learning (ML) models.</p><p><strong>Research design and methods: </strong>Diagnosed and potentially undiagnosed VWD cohorts were defined using Komodo longitudinal US claims data (January 2015-March 2020). ML models were built using key characteristics predictive of VWD diagnosis from the diagnosed cohort. Two ML models predicted VWD diagnosis with the highest accuracy in females (random forest; 84%) and males (gradient boosting machine; 85%). Undiagnosed persons suspected to have VWD were identified using an 80% cutoff probability; profiles of key characteristics were constructed.</p><p><strong>Results: </strong>The trained ML models were applied to the undiagnosed cohort (28,463 females; 20,439 males) with suspected VWD. Fifty-two percent of undiagnosed females had heavy menstrual bleeding, a key pre-diagnosis symptom. Undiagnosed males tended to have more frequent medical procedures, hospitalizations, and emergency room visits compared with undiagnosed females.</p><p><strong>Conclusions: </strong>ML algorithms successfully identified potentially undiagnosed symptomatic people with VWD, although many may remain undiagnosed and undertreated. External validation of the algorithms is recommended.</p>","PeriodicalId":12325,"journal":{"name":"Expert Review of Hematology","volume":" ","pages":"261-268"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early diagnosis of persons with von Willebrand disease using a machine learning algorithm and real-world data.\",\"authors\":\"Robert F Sidonio, Anan Lu, Sarah Hale, Jorge Caicedo, Mike Bullano, Shan Xing\",\"doi\":\"10.1080/17474086.2024.2354925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Von Willebrand disease (VWD) is underdiagnosed, often delaying treatment. VWD claims coding is limited and includes no severity qualifiers; improved identification methods for VWD are needed. The aim of this study is to identify and characterize undiagnosed symptomatic persons with VWD in the US from medical insurance claims using predictive machine learning (ML) models.</p><p><strong>Research design and methods: </strong>Diagnosed and potentially undiagnosed VWD cohorts were defined using Komodo longitudinal US claims data (January 2015-March 2020). ML models were built using key characteristics predictive of VWD diagnosis from the diagnosed cohort. Two ML models predicted VWD diagnosis with the highest accuracy in females (random forest; 84%) and males (gradient boosting machine; 85%). Undiagnosed persons suspected to have VWD were identified using an 80% cutoff probability; profiles of key characteristics were constructed.</p><p><strong>Results: </strong>The trained ML models were applied to the undiagnosed cohort (28,463 females; 20,439 males) with suspected VWD. Fifty-two percent of undiagnosed females had heavy menstrual bleeding, a key pre-diagnosis symptom. Undiagnosed males tended to have more frequent medical procedures, hospitalizations, and emergency room visits compared with undiagnosed females.</p><p><strong>Conclusions: </strong>ML algorithms successfully identified potentially undiagnosed symptomatic people with VWD, although many may remain undiagnosed and undertreated. External validation of the algorithms is recommended.</p>\",\"PeriodicalId\":12325,\"journal\":{\"name\":\"Expert Review of Hematology\",\"volume\":\" \",\"pages\":\"261-268\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Hematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17474086.2024.2354925\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17474086.2024.2354925","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Early diagnosis of persons with von Willebrand disease using a machine learning algorithm and real-world data.
Background: Von Willebrand disease (VWD) is underdiagnosed, often delaying treatment. VWD claims coding is limited and includes no severity qualifiers; improved identification methods for VWD are needed. The aim of this study is to identify and characterize undiagnosed symptomatic persons with VWD in the US from medical insurance claims using predictive machine learning (ML) models.
Research design and methods: Diagnosed and potentially undiagnosed VWD cohorts were defined using Komodo longitudinal US claims data (January 2015-March 2020). ML models were built using key characteristics predictive of VWD diagnosis from the diagnosed cohort. Two ML models predicted VWD diagnosis with the highest accuracy in females (random forest; 84%) and males (gradient boosting machine; 85%). Undiagnosed persons suspected to have VWD were identified using an 80% cutoff probability; profiles of key characteristics were constructed.
Results: The trained ML models were applied to the undiagnosed cohort (28,463 females; 20,439 males) with suspected VWD. Fifty-two percent of undiagnosed females had heavy menstrual bleeding, a key pre-diagnosis symptom. Undiagnosed males tended to have more frequent medical procedures, hospitalizations, and emergency room visits compared with undiagnosed females.
Conclusions: ML algorithms successfully identified potentially undiagnosed symptomatic people with VWD, although many may remain undiagnosed and undertreated. External validation of the algorithms is recommended.
期刊介绍:
Advanced molecular research techniques have transformed hematology in recent years. With improved understanding of hematologic diseases, we now have the opportunity to research and evaluate new biological therapies, new drugs and drug combinations, new treatment schedules and novel approaches including stem cell transplantation. We can also expect proteomics, molecular genetics and biomarker research to facilitate new diagnostic approaches and the identification of appropriate therapies. Further advances in our knowledge regarding the formation and function of blood cells and blood-forming tissues should ensue, and it will be a major challenge for hematologists to adopt these new paradigms and develop integrated strategies to define the best possible patient care. Expert Review of Hematology (1747-4086) puts these advances in context and explores how they will translate directly into clinical practice.