{"title":"数字乳腺断层摄影的调制传递函数:各种边缘设备的比较。","authors":"Takashi Shirato, Kazuhiko Doryo, Shiori Yamada, Yutaka Ozaki","doi":"10.1007/s12194-024-00815-9","DOIUrl":null,"url":null,"abstract":"<p><p>The modulation transfer function (MTF) is a fundamental tool for assessing the sharpness of digital breast tomosynthesis (DBT) systems and is primarily measured using edge devices. We compared the MTF of a Senographe Pristina DBT system using four-edge devices. These devices were composed of stainless steel with a thickness of 0.6, 0.8, and 1.0 mm, and 1.0 mm tungsten, based on different international guidelines. We evaluated spatial frequencies at MTFs of 0.5 (MTF50%) and 0.1 (MTF10%). The collimator-equipped and non-collimator configurations of the DBT were compared. We found no appreciable differences between scan and chest wall-nipple directions. Both MTF50% (2.90-2.99 cycles/mm) and MTF10% (6.69-6.94 cycles/mm) demonstrated minimal variation across the different edge devices. The collimator-equipped system exhibited an MTF50% that was approximately 5% higher than that of the non-collimator configuration. The choice of the edge device did not appreciably impact the MTF.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"739-744"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation transfer function of digital breast tomosynthesis: a comparison of various edge devices.\",\"authors\":\"Takashi Shirato, Kazuhiko Doryo, Shiori Yamada, Yutaka Ozaki\",\"doi\":\"10.1007/s12194-024-00815-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The modulation transfer function (MTF) is a fundamental tool for assessing the sharpness of digital breast tomosynthesis (DBT) systems and is primarily measured using edge devices. We compared the MTF of a Senographe Pristina DBT system using four-edge devices. These devices were composed of stainless steel with a thickness of 0.6, 0.8, and 1.0 mm, and 1.0 mm tungsten, based on different international guidelines. We evaluated spatial frequencies at MTFs of 0.5 (MTF50%) and 0.1 (MTF10%). The collimator-equipped and non-collimator configurations of the DBT were compared. We found no appreciable differences between scan and chest wall-nipple directions. Both MTF50% (2.90-2.99 cycles/mm) and MTF10% (6.69-6.94 cycles/mm) demonstrated minimal variation across the different edge devices. The collimator-equipped system exhibited an MTF50% that was approximately 5% higher than that of the non-collimator configuration. The choice of the edge device did not appreciably impact the MTF.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":\" \",\"pages\":\"739-744\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-024-00815-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00815-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Modulation transfer function of digital breast tomosynthesis: a comparison of various edge devices.
The modulation transfer function (MTF) is a fundamental tool for assessing the sharpness of digital breast tomosynthesis (DBT) systems and is primarily measured using edge devices. We compared the MTF of a Senographe Pristina DBT system using four-edge devices. These devices were composed of stainless steel with a thickness of 0.6, 0.8, and 1.0 mm, and 1.0 mm tungsten, based on different international guidelines. We evaluated spatial frequencies at MTFs of 0.5 (MTF50%) and 0.1 (MTF10%). The collimator-equipped and non-collimator configurations of the DBT were compared. We found no appreciable differences between scan and chest wall-nipple directions. Both MTF50% (2.90-2.99 cycles/mm) and MTF10% (6.69-6.94 cycles/mm) demonstrated minimal variation across the different edge devices. The collimator-equipped system exhibited an MTF50% that was approximately 5% higher than that of the non-collimator configuration. The choice of the edge device did not appreciably impact the MTF.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.