合成生物学向人工智能时代的生物社会迈进

IF 7.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Current opinion in biotechnology Pub Date : 2024-05-22 DOI:10.1016/j.copbio.2024.103143
Attia Iram, Yueming Dong, Codruta Ignea
{"title":"合成生物学向人工智能时代的生物社会迈进","authors":"Attia Iram,&nbsp;Yueming Dong,&nbsp;Codruta Ignea","doi":"10.1016/j.copbio.2024.103143","DOIUrl":null,"url":null,"abstract":"<div><p>Synthetic biology is a rapidly emerging field with broad underlying applications in health, industry, agriculture, or environment, enabling sustainable solutions for unmet needs of modern society. With the very recent addition of artificial intelligence (AI) approaches, this field is now growing at a rate that can help reach the envisioned goals of bio-based society within the next few decades. Integrating AI with plant-based technologies, such as protein engineering, phytochemicals production, plant system engineering, or microbiome engineering, potentially disruptive applications have already been reported. These include enzymatic synthesis of new-to-nature molecules, bioelectricity generation, or biomass applications as construction material. Thus, in the not-so-distant future, synthetic biologists will help attain the overarching goal of a sustainable yet efficient production system for every aspect of society.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"87 ","pages":"Article 103143"},"PeriodicalIF":7.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic biology advances towards a bio-based society in the era of artificial intelligence\",\"authors\":\"Attia Iram,&nbsp;Yueming Dong,&nbsp;Codruta Ignea\",\"doi\":\"10.1016/j.copbio.2024.103143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Synthetic biology is a rapidly emerging field with broad underlying applications in health, industry, agriculture, or environment, enabling sustainable solutions for unmet needs of modern society. With the very recent addition of artificial intelligence (AI) approaches, this field is now growing at a rate that can help reach the envisioned goals of bio-based society within the next few decades. Integrating AI with plant-based technologies, such as protein engineering, phytochemicals production, plant system engineering, or microbiome engineering, potentially disruptive applications have already been reported. These include enzymatic synthesis of new-to-nature molecules, bioelectricity generation, or biomass applications as construction material. Thus, in the not-so-distant future, synthetic biologists will help attain the overarching goal of a sustainable yet efficient production system for every aspect of society.</p></div>\",\"PeriodicalId\":10833,\"journal\":{\"name\":\"Current opinion in biotechnology\",\"volume\":\"87 \",\"pages\":\"Article 103143\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095816692400079X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095816692400079X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

合成生物学是一个迅速崛起的领域,在健康、工业、农业或环境领域有着广泛的基础应用,能够为现代社会尚未满足的需求提供可持续的解决方案。随着最近人工智能(AI)方法的加入,该领域目前的发展速度有助于在未来几十年内实现生物社会的预期目标。据报道,将人工智能与基于植物的技术(如蛋白质工程、植物化学物质生产、植物系统工程或微生物组工程)相结合,可能会产生颠覆性的应用。这些应用包括新自然分子的酶法合成、生物发电或作为建筑材料的生物质应用。因此,在不远的将来,合成生物学家将帮助实现为社会的各个方面建立一个可持续且高效的生产系统这一总体目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthetic biology advances towards a bio-based society in the era of artificial intelligence

Synthetic biology is a rapidly emerging field with broad underlying applications in health, industry, agriculture, or environment, enabling sustainable solutions for unmet needs of modern society. With the very recent addition of artificial intelligence (AI) approaches, this field is now growing at a rate that can help reach the envisioned goals of bio-based society within the next few decades. Integrating AI with plant-based technologies, such as protein engineering, phytochemicals production, plant system engineering, or microbiome engineering, potentially disruptive applications have already been reported. These include enzymatic synthesis of new-to-nature molecules, bioelectricity generation, or biomass applications as construction material. Thus, in the not-so-distant future, synthetic biologists will help attain the overarching goal of a sustainable yet efficient production system for every aspect of society.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in biotechnology
Current opinion in biotechnology 工程技术-生化研究方法
CiteScore
16.20
自引率
2.60%
发文量
226
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time. As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows. COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.
期刊最新文献
Toward a circular nitrogen bioeconomy: integrating nitrogen bioconcentration, separations, and high-value products for nitrogen recovery Tissue engineering in the agri-food industry: current status, socio-economic overview and regulatory compliance A biotechnological perspective on sand filtration for drinking water production National phosphorus planning for food and environmental security Engineering next-generation chimeric antigen receptor-T cells: recent breakthroughs and remaining challenges in design and screening of novel chimeric antigen receptor variants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1