植物中的生物计算,从概念验证到应用

IF 7.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Current opinion in biotechnology Pub Date : 2024-05-22 DOI:10.1016/j.copbio.2024.103146
Sarah Guiziou
{"title":"植物中的生物计算,从概念验证到应用","authors":"Sarah Guiziou","doi":"10.1016/j.copbio.2024.103146","DOIUrl":null,"url":null,"abstract":"<div><p>In response to the challenges of climate change and the transition toward sustainability, synthetic biology offers innovative solutions. Most current plant synthetic biology applications rely on the constitutive expression of enzymes and regulators. To engineer plant phenotypes tuneable to environmental conditions and plant cellular states, the integration of multiple signals in synthetic circuits is required. While most circuits are developed in model organisms, numerous tools were recently developed to implement biocomputation in plant synthetic circuits. I presented in this review the tools and design methods for logic circuit implementation in plants. I highlighted recent and potential applications of those circuits to understand and engineer plant interaction with the environment, development, and metabolic pathways.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"87 ","pages":"Article 103146"},"PeriodicalIF":7.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S095816692400082X/pdfft?md5=4a323706e0213144aeb355c89896be94&pid=1-s2.0-S095816692400082X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Biocomputing in plants, from proof of concept to application\",\"authors\":\"Sarah Guiziou\",\"doi\":\"10.1016/j.copbio.2024.103146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In response to the challenges of climate change and the transition toward sustainability, synthetic biology offers innovative solutions. Most current plant synthetic biology applications rely on the constitutive expression of enzymes and regulators. To engineer plant phenotypes tuneable to environmental conditions and plant cellular states, the integration of multiple signals in synthetic circuits is required. While most circuits are developed in model organisms, numerous tools were recently developed to implement biocomputation in plant synthetic circuits. I presented in this review the tools and design methods for logic circuit implementation in plants. I highlighted recent and potential applications of those circuits to understand and engineer plant interaction with the environment, development, and metabolic pathways.</p></div>\",\"PeriodicalId\":10833,\"journal\":{\"name\":\"Current opinion in biotechnology\",\"volume\":\"87 \",\"pages\":\"Article 103146\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S095816692400082X/pdfft?md5=4a323706e0213144aeb355c89896be94&pid=1-s2.0-S095816692400082X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095816692400082X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095816692400082X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

为应对气候变化和向可持续发展过渡的挑战,合成生物学提供了创新的解决方案。目前大多数植物合成生物学应用都依赖于酶和调节剂的组成型表达。要设计出能适应环境条件和植物细胞状态的植物表型,就需要在合成电路中整合多种信号。虽然大多数电路都是在模式生物中开发的,但最近开发了许多工具,用于在植物合成电路中实施生物计算。我在这篇综述中介绍了在植物中实现逻辑电路的工具和设计方法。我重点介绍了这些电路在理解和设计植物与环境的相互作用、发育和代谢途径方面的最新应用和潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biocomputing in plants, from proof of concept to application

In response to the challenges of climate change and the transition toward sustainability, synthetic biology offers innovative solutions. Most current plant synthetic biology applications rely on the constitutive expression of enzymes and regulators. To engineer plant phenotypes tuneable to environmental conditions and plant cellular states, the integration of multiple signals in synthetic circuits is required. While most circuits are developed in model organisms, numerous tools were recently developed to implement biocomputation in plant synthetic circuits. I presented in this review the tools and design methods for logic circuit implementation in plants. I highlighted recent and potential applications of those circuits to understand and engineer plant interaction with the environment, development, and metabolic pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in biotechnology
Current opinion in biotechnology 工程技术-生化研究方法
CiteScore
16.20
自引率
2.60%
发文量
226
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time. As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows. COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.
期刊最新文献
Toward a circular nitrogen bioeconomy: integrating nitrogen bioconcentration, separations, and high-value products for nitrogen recovery Tissue engineering in the agri-food industry: current status, socio-economic overview and regulatory compliance A biotechnological perspective on sand filtration for drinking water production National phosphorus planning for food and environmental security Engineering next-generation chimeric antigen receptor-T cells: recent breakthroughs and remaining challenges in design and screening of novel chimeric antigen receptor variants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1