{"title":"使用可编程网络设备进行网内机器学习:调查","authors":"Changgang Zheng;Xinpeng Hong;Damu Ding;Shay Vargaftik;Yaniv Ben-Itzhak;Noa Zilberman","doi":"10.1109/COMST.2023.3344351","DOIUrl":null,"url":null,"abstract":"Machine learning is widely used to solve networking challenges, ranging from traffic classification and anomaly detection to network configuration. However, machine learning also requires significant processing and often increases the load on both networks and servers. The introduction of in-network computing, enabled by programmable network devices, has allowed to run applications within the network, providing higher throughput and lower latency. Soon after, in-network machine learning solutions started to emerge, enabling machine learning functionality within the network itself. This survey introduces the concept of in-network machine learning and provides a comprehensive taxonomy. The survey provides an introduction to the technology and explains the different types of machine learning solutions built upon programmable network devices. It explores the different types of machine learning models implemented within the network, and discusses related challenges and solutions. In-network machine learning can significantly benefit cloud computing and next-generation networks, and this survey concludes with a discussion of future trends.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 2","pages":"1171-1200"},"PeriodicalIF":34.4000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Network Machine Learning Using Programmable Network Devices: A Survey\",\"authors\":\"Changgang Zheng;Xinpeng Hong;Damu Ding;Shay Vargaftik;Yaniv Ben-Itzhak;Noa Zilberman\",\"doi\":\"10.1109/COMST.2023.3344351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning is widely used to solve networking challenges, ranging from traffic classification and anomaly detection to network configuration. However, machine learning also requires significant processing and often increases the load on both networks and servers. The introduction of in-network computing, enabled by programmable network devices, has allowed to run applications within the network, providing higher throughput and lower latency. Soon after, in-network machine learning solutions started to emerge, enabling machine learning functionality within the network itself. This survey introduces the concept of in-network machine learning and provides a comprehensive taxonomy. The survey provides an introduction to the technology and explains the different types of machine learning solutions built upon programmable network devices. It explores the different types of machine learning models implemented within the network, and discusses related challenges and solutions. In-network machine learning can significantly benefit cloud computing and next-generation networks, and this survey concludes with a discussion of future trends.\",\"PeriodicalId\":55029,\"journal\":{\"name\":\"IEEE Communications Surveys and Tutorials\",\"volume\":\"26 2\",\"pages\":\"1171-1200\"},\"PeriodicalIF\":34.4000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Surveys and Tutorials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10365500/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10365500/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
In-Network Machine Learning Using Programmable Network Devices: A Survey
Machine learning is widely used to solve networking challenges, ranging from traffic classification and anomaly detection to network configuration. However, machine learning also requires significant processing and often increases the load on both networks and servers. The introduction of in-network computing, enabled by programmable network devices, has allowed to run applications within the network, providing higher throughput and lower latency. Soon after, in-network machine learning solutions started to emerge, enabling machine learning functionality within the network itself. This survey introduces the concept of in-network machine learning and provides a comprehensive taxonomy. The survey provides an introduction to the technology and explains the different types of machine learning solutions built upon programmable network devices. It explores the different types of machine learning models implemented within the network, and discusses related challenges and solutions. In-network machine learning can significantly benefit cloud computing and next-generation networks, and this survey concludes with a discussion of future trends.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.