{"title":"小鼠早期胚胎中 TNT 的爆炸性发现","authors":"Chad S. Driscoll, Jaehwan Kim, Jason G. Knott","doi":"10.1038/s41594-024-01304-8","DOIUrl":null,"url":null,"abstract":"The molecular mechanisms that regulate the transition from totipotency into divergent cellular states are unclear. Two new studies show that the transcription factors TFAP2C, NR5A2 and TEAD4 (TNT) support the formation of a transient bipotent state by activating early pluripotency and trophectoderm genes and modulating HIPPO signaling.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 6","pages":"852-855"},"PeriodicalIF":12.5000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The explosive discovery of TNT in early mouse embryos\",\"authors\":\"Chad S. Driscoll, Jaehwan Kim, Jason G. Knott\",\"doi\":\"10.1038/s41594-024-01304-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The molecular mechanisms that regulate the transition from totipotency into divergent cellular states are unclear. Two new studies show that the transcription factors TFAP2C, NR5A2 and TEAD4 (TNT) support the formation of a transient bipotent state by activating early pluripotency and trophectoderm genes and modulating HIPPO signaling.\",\"PeriodicalId\":49141,\"journal\":{\"name\":\"Nature Structural & Molecular Biology\",\"volume\":\"31 6\",\"pages\":\"852-855\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41594-024-01304-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01304-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The explosive discovery of TNT in early mouse embryos
The molecular mechanisms that regulate the transition from totipotency into divergent cellular states are unclear. Two new studies show that the transcription factors TFAP2C, NR5A2 and TEAD4 (TNT) support the formation of a transient bipotent state by activating early pluripotency and trophectoderm genes and modulating HIPPO signaling.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.