{"title":"通过大规模螺旋挤压 3D 打印技术推进增材制造技术,用于生产精密 Parawood 粉末/PLA 家具","authors":"Chakrit Suvanjumrat , Kanchanabhorn Chansoda , Watcharapong Chookaew","doi":"10.1016/j.clet.2024.100753","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a large-scale screw-extrusion 3D printer specifically tailored for additive manufacturing applications is introduced, primarily focusing on crafting parawood powder/polylactic acid (PLA) furniture. Boasting a large build volume (700 × 700 × 700 mm<sup>3</sup>), the printer incorporates a meticulously designed screw extruder to ensure the precise feeding of composite material pellets. The investigation delves into the nuanced relationship between variations in the extruder nozzle orifice diameter and the resulting impact on the extrusion rate, directly correlating these variations with the motor speed. Additionally, the influence of the parawood powder/PLA ratio is explored through comprehensive mechanical property testing of the printed specimens. Optimal outcomes were attained with a 15 %w/w parawood powder composition, yielding an impressive ultimate strength of 54 MPa under specific printing conditions. The efficacy of the large-scale screw-extrusion 3D printer was robustly validated through the successful production of a parawood powder/PLA stacking chair, meeting the criteria stipulated in the Thai industrial standard. Furthermore, an identified parawood powder/PLA component, characterized by a rectangular cylinder with a cross-sectional area of 19.4 × 24.0 mm<sup>2</sup>, holds promising potential for versatile applications in furniture assembly. This innovative extrusion 3D printing approach, combined with meticulously optimized parameters, has unequivocal potential for manufacturing a diverse array of parawood powder/PLA furniture, elevating the value of parawood byproducts and contributing to waste reduction during processing.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000338/pdfft?md5=276d822eedf2689512be85df81a67071&pid=1-s2.0-S2666790824000338-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Additive manufacturing advancement through large-scale screw-extrusion 3D printing for precision parawood powder/PLA furniture production\",\"authors\":\"Chakrit Suvanjumrat , Kanchanabhorn Chansoda , Watcharapong Chookaew\",\"doi\":\"10.1016/j.clet.2024.100753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a large-scale screw-extrusion 3D printer specifically tailored for additive manufacturing applications is introduced, primarily focusing on crafting parawood powder/polylactic acid (PLA) furniture. Boasting a large build volume (700 × 700 × 700 mm<sup>3</sup>), the printer incorporates a meticulously designed screw extruder to ensure the precise feeding of composite material pellets. The investigation delves into the nuanced relationship between variations in the extruder nozzle orifice diameter and the resulting impact on the extrusion rate, directly correlating these variations with the motor speed. Additionally, the influence of the parawood powder/PLA ratio is explored through comprehensive mechanical property testing of the printed specimens. Optimal outcomes were attained with a 15 %w/w parawood powder composition, yielding an impressive ultimate strength of 54 MPa under specific printing conditions. The efficacy of the large-scale screw-extrusion 3D printer was robustly validated through the successful production of a parawood powder/PLA stacking chair, meeting the criteria stipulated in the Thai industrial standard. Furthermore, an identified parawood powder/PLA component, characterized by a rectangular cylinder with a cross-sectional area of 19.4 × 24.0 mm<sup>2</sup>, holds promising potential for versatile applications in furniture assembly. This innovative extrusion 3D printing approach, combined with meticulously optimized parameters, has unequivocal potential for manufacturing a diverse array of parawood powder/PLA furniture, elevating the value of parawood byproducts and contributing to waste reduction during processing.</p></div>\",\"PeriodicalId\":34618,\"journal\":{\"name\":\"Cleaner Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666790824000338/pdfft?md5=276d822eedf2689512be85df81a67071&pid=1-s2.0-S2666790824000338-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666790824000338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790824000338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Additive manufacturing advancement through large-scale screw-extrusion 3D printing for precision parawood powder/PLA furniture production
In this paper, a large-scale screw-extrusion 3D printer specifically tailored for additive manufacturing applications is introduced, primarily focusing on crafting parawood powder/polylactic acid (PLA) furniture. Boasting a large build volume (700 × 700 × 700 mm3), the printer incorporates a meticulously designed screw extruder to ensure the precise feeding of composite material pellets. The investigation delves into the nuanced relationship between variations in the extruder nozzle orifice diameter and the resulting impact on the extrusion rate, directly correlating these variations with the motor speed. Additionally, the influence of the parawood powder/PLA ratio is explored through comprehensive mechanical property testing of the printed specimens. Optimal outcomes were attained with a 15 %w/w parawood powder composition, yielding an impressive ultimate strength of 54 MPa under specific printing conditions. The efficacy of the large-scale screw-extrusion 3D printer was robustly validated through the successful production of a parawood powder/PLA stacking chair, meeting the criteria stipulated in the Thai industrial standard. Furthermore, an identified parawood powder/PLA component, characterized by a rectangular cylinder with a cross-sectional area of 19.4 × 24.0 mm2, holds promising potential for versatile applications in furniture assembly. This innovative extrusion 3D printing approach, combined with meticulously optimized parameters, has unequivocal potential for manufacturing a diverse array of parawood powder/PLA furniture, elevating the value of parawood byproducts and contributing to waste reduction during processing.