Shaoli Jiang, Janet S. S. Wong, Debashis Puhan, Tian Yuan, Xiuqin Bai, Chengqing Yuan
{"title":"水润滑条件下热塑性聚氨酯基轴承材料的摩擦学评估:载荷、滑动速度和温度的影响","authors":"Shaoli Jiang, Janet S. S. Wong, Debashis Puhan, Tian Yuan, Xiuqin Bai, Chengqing Yuan","doi":"10.1007/s40544-023-0856-1","DOIUrl":null,"url":null,"abstract":"<p>Polymers are widely used in bearing applications. In the case of water-lubricated stern tube bearings, thermoplastic polyurethane (TPU)-based composites are used due to their excellent wear resistance, corrosion resistance, and tunable mechanical properties. Their tribological performance, however, depends on operating conditions. In this work, TPU was blended with carbon fiber, graphene platelet, and ultra-high molecular weight polyethylene (UHMWPE). Friction tests of TPU based-composites against copper countersurface were carried out in water to mimic the actual operating conditions of the bearing. Most of the resulting contacts were in the boundary lubrication regime, in which friction was attributed to both contact mechanics of asperities as well as water lubrication. Our results show that the viscoelasticity of TPU has a considerable impact on its tribological performance. Water lubrication at 50 °C promotes the softening of polymer surface material during sliding, resulting in higher fluctuation in the coefficient of friction and wear loss. This is attributed to the reduced thermomechanical properties. In addition, Schallamach waviness is observed on worn surface. The tribological properties of TPU are significantly improved by the inclusion of carbon fiber, graphene platelet, and UHMWPE. The formation of graphene transfer-layers and UHMWPE transfer film reduces friction and wear loss, while the inclusion of carbon fiber enhances wear resistance due to improved mechanical properties and load bearing capacity.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"21 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tribological evaluation of thermoplastic polyurethane-based bearing materials under water lubrication: Effect of load, sliding speed, and temperature\",\"authors\":\"Shaoli Jiang, Janet S. S. Wong, Debashis Puhan, Tian Yuan, Xiuqin Bai, Chengqing Yuan\",\"doi\":\"10.1007/s40544-023-0856-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polymers are widely used in bearing applications. In the case of water-lubricated stern tube bearings, thermoplastic polyurethane (TPU)-based composites are used due to their excellent wear resistance, corrosion resistance, and tunable mechanical properties. Their tribological performance, however, depends on operating conditions. In this work, TPU was blended with carbon fiber, graphene platelet, and ultra-high molecular weight polyethylene (UHMWPE). Friction tests of TPU based-composites against copper countersurface were carried out in water to mimic the actual operating conditions of the bearing. Most of the resulting contacts were in the boundary lubrication regime, in which friction was attributed to both contact mechanics of asperities as well as water lubrication. Our results show that the viscoelasticity of TPU has a considerable impact on its tribological performance. Water lubrication at 50 °C promotes the softening of polymer surface material during sliding, resulting in higher fluctuation in the coefficient of friction and wear loss. This is attributed to the reduced thermomechanical properties. In addition, Schallamach waviness is observed on worn surface. The tribological properties of TPU are significantly improved by the inclusion of carbon fiber, graphene platelet, and UHMWPE. The formation of graphene transfer-layers and UHMWPE transfer film reduces friction and wear loss, while the inclusion of carbon fiber enhances wear resistance due to improved mechanical properties and load bearing capacity.\\n</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40544-023-0856-1\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-023-0856-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Tribological evaluation of thermoplastic polyurethane-based bearing materials under water lubrication: Effect of load, sliding speed, and temperature
Polymers are widely used in bearing applications. In the case of water-lubricated stern tube bearings, thermoplastic polyurethane (TPU)-based composites are used due to their excellent wear resistance, corrosion resistance, and tunable mechanical properties. Their tribological performance, however, depends on operating conditions. In this work, TPU was blended with carbon fiber, graphene platelet, and ultra-high molecular weight polyethylene (UHMWPE). Friction tests of TPU based-composites against copper countersurface were carried out in water to mimic the actual operating conditions of the bearing. Most of the resulting contacts were in the boundary lubrication regime, in which friction was attributed to both contact mechanics of asperities as well as water lubrication. Our results show that the viscoelasticity of TPU has a considerable impact on its tribological performance. Water lubrication at 50 °C promotes the softening of polymer surface material during sliding, resulting in higher fluctuation in the coefficient of friction and wear loss. This is attributed to the reduced thermomechanical properties. In addition, Schallamach waviness is observed on worn surface. The tribological properties of TPU are significantly improved by the inclusion of carbon fiber, graphene platelet, and UHMWPE. The formation of graphene transfer-layers and UHMWPE transfer film reduces friction and wear loss, while the inclusion of carbon fiber enhances wear resistance due to improved mechanical properties and load bearing capacity.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.