Jonna Boyda, David Moore, Paige Krupa, Ashley Kimble, Thomas Biber, Lauren May, Alan Kennedy
{"title":"饲粮对鲦鱼幼体 7 天亚慢性生长终点的影响:全氟辛烷磺酸案例研究。","authors":"Jonna Boyda, David Moore, Paige Krupa, Ashley Kimble, Thomas Biber, Lauren May, Alan Kennedy","doi":"10.1007/s00244-024-01068-8","DOIUrl":null,"url":null,"abstract":"<div><p>The larval fathead minnow, <i>Pimephales promelas</i>, 7-day subchronic survival and growth standard toxicity test method is commonly used for research and regulatory testing of effluents and compounds, including emerging contaminants such as Perfluorooctanesulfonic Acid (PFOS). Existing feeding guidelines for testing are described in multiple methods but are open to interpretation. The current study sought to determine the impact of feeding ration on <i>P. promelas</i> survival and biomass during a subchronic exposure to PFOS. The study was conducted in two phases: (1) a control experiment to determine the most significant feeding ration factors that maximize biomass, with consideration to laboratory logistics, and (2) application of down-selected feeding rations in a PFOS exposure to determine toxicity reference values. The control optimization study supported that feeding ration and feeding frequency were significant factors in fish biomass. In the subsequent PFOS study, fish were fed a high or low ration of <i>Artemia</i> twice daily, while exposed to 0.3 to 3.4 mg/L PFOS. Fish fed a high ration of <i>Artemia</i> had significantly (<i>p</i> < 0.05) greater biomass than fish fed a low ration in all exposure concentrations except 3.4 mg/L, where survival was low in both treatments. The feeding ration was not a significant factor on the survival endpoint for either treatment, but the PFOS concentration was (<i>p</i> < 0.0001) (high ration LC<sub>50</sub> = 2.44 mg/L; low ration LC<sub>50</sub> = 2.25 mg/L). These findings contribute to a better understanding of the impact feeding ration has in toxicity assessments and downstream regulatory decisions.</p></div>","PeriodicalId":8377,"journal":{"name":"Archives of Environmental Contamination and Toxicology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142975/pdf/","citationCount":"0","resultStr":"{\"title\":\"Feeding Ration Impacts Larval Pimephales Promelas 7-Day Subchronic Growth Endpoint: Case Study with Perfluorooctanesulfonic Acid\",\"authors\":\"Jonna Boyda, David Moore, Paige Krupa, Ashley Kimble, Thomas Biber, Lauren May, Alan Kennedy\",\"doi\":\"10.1007/s00244-024-01068-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The larval fathead minnow, <i>Pimephales promelas</i>, 7-day subchronic survival and growth standard toxicity test method is commonly used for research and regulatory testing of effluents and compounds, including emerging contaminants such as Perfluorooctanesulfonic Acid (PFOS). Existing feeding guidelines for testing are described in multiple methods but are open to interpretation. The current study sought to determine the impact of feeding ration on <i>P. promelas</i> survival and biomass during a subchronic exposure to PFOS. The study was conducted in two phases: (1) a control experiment to determine the most significant feeding ration factors that maximize biomass, with consideration to laboratory logistics, and (2) application of down-selected feeding rations in a PFOS exposure to determine toxicity reference values. The control optimization study supported that feeding ration and feeding frequency were significant factors in fish biomass. In the subsequent PFOS study, fish were fed a high or low ration of <i>Artemia</i> twice daily, while exposed to 0.3 to 3.4 mg/L PFOS. Fish fed a high ration of <i>Artemia</i> had significantly (<i>p</i> < 0.05) greater biomass than fish fed a low ration in all exposure concentrations except 3.4 mg/L, where survival was low in both treatments. The feeding ration was not a significant factor on the survival endpoint for either treatment, but the PFOS concentration was (<i>p</i> < 0.0001) (high ration LC<sub>50</sub> = 2.44 mg/L; low ration LC<sub>50</sub> = 2.25 mg/L). These findings contribute to a better understanding of the impact feeding ration has in toxicity assessments and downstream regulatory decisions.</p></div>\",\"PeriodicalId\":8377,\"journal\":{\"name\":\"Archives of Environmental Contamination and Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142975/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Environmental Contamination and Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00244-024-01068-8\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00244-024-01068-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Feeding Ration Impacts Larval Pimephales Promelas 7-Day Subchronic Growth Endpoint: Case Study with Perfluorooctanesulfonic Acid
The larval fathead minnow, Pimephales promelas, 7-day subchronic survival and growth standard toxicity test method is commonly used for research and regulatory testing of effluents and compounds, including emerging contaminants such as Perfluorooctanesulfonic Acid (PFOS). Existing feeding guidelines for testing are described in multiple methods but are open to interpretation. The current study sought to determine the impact of feeding ration on P. promelas survival and biomass during a subchronic exposure to PFOS. The study was conducted in two phases: (1) a control experiment to determine the most significant feeding ration factors that maximize biomass, with consideration to laboratory logistics, and (2) application of down-selected feeding rations in a PFOS exposure to determine toxicity reference values. The control optimization study supported that feeding ration and feeding frequency were significant factors in fish biomass. In the subsequent PFOS study, fish were fed a high or low ration of Artemia twice daily, while exposed to 0.3 to 3.4 mg/L PFOS. Fish fed a high ration of Artemia had significantly (p < 0.05) greater biomass than fish fed a low ration in all exposure concentrations except 3.4 mg/L, where survival was low in both treatments. The feeding ration was not a significant factor on the survival endpoint for either treatment, but the PFOS concentration was (p < 0.0001) (high ration LC50 = 2.44 mg/L; low ration LC50 = 2.25 mg/L). These findings contribute to a better understanding of the impact feeding ration has in toxicity assessments and downstream regulatory decisions.
期刊介绍:
Archives of Environmental Contamination and Toxicology provides a place for the publication of timely, detailed, and definitive scientific studies pertaining to the source, transport, fate and / or effects of contaminants in the environment. The journal will consider submissions dealing with new analytical and toxicological techniques that advance our understanding of the source, transport, fate and / or effects of contaminants in the environment. AECT will now consider mini-reviews (where length including references is less than 5,000 words), which highlight case studies, a geographic topic of interest, or a timely subject of debate. AECT will also consider Special Issues on subjects of broad interest. The journal strongly encourages authors to ensure that their submission places a strong emphasis on ecosystem processes; submissions limited to technical aspects of such areas as toxicity testing for single chemicals, wastewater effluent characterization, human occupation exposure, or agricultural phytotoxicity are unlikely to be considered.