Yuan-Zhe Hu, Ru-Xue Liu, Jia-Peng He, Guo-Wei Zhou, Da-Yong Li
{"title":"用于铝合金板材索状缺陷分析的深度学习方法:预测与分级","authors":"Yuan-Zhe Hu, Ru-Xue Liu, Jia-Peng He, Guo-Wei Zhou, Da-Yong Li","doi":"10.1007/s40436-024-00499-9","DOIUrl":null,"url":null,"abstract":"<div><p>Roping is a severe band-like surface defect that occurs in deformed aluminum alloy sheets. Accurate roping prediction and rating are essential for industrial applications. Recently, the authors introduced an artificial neural network (ANN) model to efficiently forecast roping behavior across the thickness of large regions with texture gradients. In this study, the previously proposed ANN model for roping prediction is briefly reviewed, and a few-shot learning (FSL)-based method is developed for roping grading with limited samples. To consider the directionality of the roping patterns, the roping dataset constructed from experimental observations is transformed into the frequency domain for more compact characterization. A transfer-based FSL method is further presented for grade roping with manifold mixup regularization and the Sinkhorn mapping algorithm. A new component-focused representation is also implemented for data-processing, exploiting the close correlation between roping and power distribution in the frequency domain. The ultimate FSL method achieved an optimal accuracy of 95.65% in roping classification with only five training samples per class, outperforming four typical FSL methods. This FSL approach can be applied to grade the roping morphologies predicted by the ANN model. Consequently, the combination of prediction and grading using deep learning provides a new paradigm for roping analysis and control.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"12 3","pages":"576 - 590"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning methods for roping defect analysis in aluminum alloy sheets: prediction and grading\",\"authors\":\"Yuan-Zhe Hu, Ru-Xue Liu, Jia-Peng He, Guo-Wei Zhou, Da-Yong Li\",\"doi\":\"10.1007/s40436-024-00499-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Roping is a severe band-like surface defect that occurs in deformed aluminum alloy sheets. Accurate roping prediction and rating are essential for industrial applications. Recently, the authors introduced an artificial neural network (ANN) model to efficiently forecast roping behavior across the thickness of large regions with texture gradients. In this study, the previously proposed ANN model for roping prediction is briefly reviewed, and a few-shot learning (FSL)-based method is developed for roping grading with limited samples. To consider the directionality of the roping patterns, the roping dataset constructed from experimental observations is transformed into the frequency domain for more compact characterization. A transfer-based FSL method is further presented for grade roping with manifold mixup regularization and the Sinkhorn mapping algorithm. A new component-focused representation is also implemented for data-processing, exploiting the close correlation between roping and power distribution in the frequency domain. The ultimate FSL method achieved an optimal accuracy of 95.65% in roping classification with only five training samples per class, outperforming four typical FSL methods. This FSL approach can be applied to grade the roping morphologies predicted by the ANN model. Consequently, the combination of prediction and grading using deep learning provides a new paradigm for roping analysis and control.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"12 3\",\"pages\":\"576 - 590\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-024-00499-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-024-00499-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Deep learning methods for roping defect analysis in aluminum alloy sheets: prediction and grading
Roping is a severe band-like surface defect that occurs in deformed aluminum alloy sheets. Accurate roping prediction and rating are essential for industrial applications. Recently, the authors introduced an artificial neural network (ANN) model to efficiently forecast roping behavior across the thickness of large regions with texture gradients. In this study, the previously proposed ANN model for roping prediction is briefly reviewed, and a few-shot learning (FSL)-based method is developed for roping grading with limited samples. To consider the directionality of the roping patterns, the roping dataset constructed from experimental observations is transformed into the frequency domain for more compact characterization. A transfer-based FSL method is further presented for grade roping with manifold mixup regularization and the Sinkhorn mapping algorithm. A new component-focused representation is also implemented for data-processing, exploiting the close correlation between roping and power distribution in the frequency domain. The ultimate FSL method achieved an optimal accuracy of 95.65% in roping classification with only five training samples per class, outperforming four typical FSL methods. This FSL approach can be applied to grade the roping morphologies predicted by the ANN model. Consequently, the combination of prediction and grading using deep learning provides a new paradigm for roping analysis and control.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.