{"title":"利用离散场共享自由度的高效应变梯度混合元素","authors":"Stefanos-Aldo Papanicolopulos","doi":"10.1002/nme.7536","DOIUrl":null,"url":null,"abstract":"<p>A displacement-only finite-element formulation of strain-gradient models requires elements with <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {C}^1 $$</annotation>\n </semantics></math> continuous interpolation. Mixed formulations have been proposed to allow the use of more common <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {C}^0 $$</annotation>\n </semantics></math> element shape functions. These mixed formulations are based on the interpolation of two different fields, displacement and some kind of displacement gradient, with the relation between the two fields enforced using either Lagrange multipliers or penalty methods. All elements proposed in the literature for such formulations use a distinct set of degrees of freedom to discretise each field. In this work, we introduce for the first time shared degrees of freedom, that lead to a mixed formulation with a significantly better numerical performance. We describe how this novel mixed formulation can be derived, present individual elements implementing this, and discuss the significance of the results.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7536","citationCount":"0","resultStr":"{\"title\":\"Efficient strain-gradient mixed elements using shared degrees of freedom for the discretised fields\",\"authors\":\"Stefanos-Aldo Papanicolopulos\",\"doi\":\"10.1002/nme.7536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A displacement-only finite-element formulation of strain-gradient models requires elements with <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {C}^1 $$</annotation>\\n </semantics></math> continuous interpolation. Mixed formulations have been proposed to allow the use of more common <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {C}^0 $$</annotation>\\n </semantics></math> element shape functions. These mixed formulations are based on the interpolation of two different fields, displacement and some kind of displacement gradient, with the relation between the two fields enforced using either Lagrange multipliers or penalty methods. All elements proposed in the literature for such formulations use a distinct set of degrees of freedom to discretise each field. In this work, we introduce for the first time shared degrees of freedom, that lead to a mixed formulation with a significantly better numerical performance. We describe how this novel mixed formulation can be derived, present individual elements implementing this, and discuss the significance of the results.</p>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7536\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.7536\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7536","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficient strain-gradient mixed elements using shared degrees of freedom for the discretised fields
A displacement-only finite-element formulation of strain-gradient models requires elements with continuous interpolation. Mixed formulations have been proposed to allow the use of more common element shape functions. These mixed formulations are based on the interpolation of two different fields, displacement and some kind of displacement gradient, with the relation between the two fields enforced using either Lagrange multipliers or penalty methods. All elements proposed in the literature for such formulations use a distinct set of degrees of freedom to discretise each field. In this work, we introduce for the first time shared degrees of freedom, that lead to a mixed formulation with a significantly better numerical performance. We describe how this novel mixed formulation can be derived, present individual elements implementing this, and discuss the significance of the results.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.