超声波振动在镁合金搭接焊中的应用

IF 0.7 Q4 ENGINEERING, MECHANICAL Journal of Vibroengineering Pub Date : 2024-05-23 DOI:10.21595/jve.2024.23803
Yuqin Tian
{"title":"超声波振动在镁合金搭接焊中的应用","authors":"Yuqin Tian","doi":"10.21595/jve.2024.23803","DOIUrl":null,"url":null,"abstract":"In order to enhance the performance of magnesium alloy and galvanized steel welds, ultrasonic vibration was applied to the laser welding process, and the effect of ultrasonic on mechanical properties was verified through experimental methods. The laser welding system for the lap weld seam was designed, and the ultrasonic vibration module and image detection module were added, which can obtain the influence of ultrasonic vibration on the molten pool area. Under the conditions of ultrasonic vibration power of 1000 W and 0 W, the characteristics of the weld pool area, metallographic structure, tensile strength, fracture morphology, hardness, residual stress, wear resistance, and corrosion resistance of the weld specimen were compared. The image data acquisition structure indicated that ultrasonic vibration can effectively reduce the ineffective area of the molten pool and make the energy in the molten pool more concentrated. Under the influence of ultrasonic vibration, the maximum molten pool area decreased to 5.38 mm2, with a variation range of 3.9 %, and the proportion of pores was greatly reduced. Research found that ultrasonic vibration can significantly improve the microstructure characteristics of the fusion welding zone, with an average grain size reduced to 23 μm. The reduction of grain size and refinement of microstructure were beneficial to the improvement of mechanical properties of magnesium alloy joints, with a yield strength increase of 6.5 %. Ultrasonic vibration had little effect on the hardness of the heat affected zone, it can increase the average hardness of the weld zone by more than 5 % and reduce the maximum residual stress by more than 50 %. Under different pressure and friction speed conditions, the maximum wear amount can be reduced by more than 25 %. At the same time, the resistance to oxidation corrosion and electrochemical corrosion also can be improved to a certain extent.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of ultrasonic vibration in magnesium alloy lap welding\",\"authors\":\"Yuqin Tian\",\"doi\":\"10.21595/jve.2024.23803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to enhance the performance of magnesium alloy and galvanized steel welds, ultrasonic vibration was applied to the laser welding process, and the effect of ultrasonic on mechanical properties was verified through experimental methods. The laser welding system for the lap weld seam was designed, and the ultrasonic vibration module and image detection module were added, which can obtain the influence of ultrasonic vibration on the molten pool area. Under the conditions of ultrasonic vibration power of 1000 W and 0 W, the characteristics of the weld pool area, metallographic structure, tensile strength, fracture morphology, hardness, residual stress, wear resistance, and corrosion resistance of the weld specimen were compared. The image data acquisition structure indicated that ultrasonic vibration can effectively reduce the ineffective area of the molten pool and make the energy in the molten pool more concentrated. Under the influence of ultrasonic vibration, the maximum molten pool area decreased to 5.38 mm2, with a variation range of 3.9 %, and the proportion of pores was greatly reduced. Research found that ultrasonic vibration can significantly improve the microstructure characteristics of the fusion welding zone, with an average grain size reduced to 23 μm. The reduction of grain size and refinement of microstructure were beneficial to the improvement of mechanical properties of magnesium alloy joints, with a yield strength increase of 6.5 %. Ultrasonic vibration had little effect on the hardness of the heat affected zone, it can increase the average hardness of the weld zone by more than 5 % and reduce the maximum residual stress by more than 50 %. Under different pressure and friction speed conditions, the maximum wear amount can be reduced by more than 25 %. At the same time, the resistance to oxidation corrosion and electrochemical corrosion also can be improved to a certain extent.\",\"PeriodicalId\":49956,\"journal\":{\"name\":\"Journal of Vibroengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibroengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/jve.2024.23803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibroengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/jve.2024.23803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了提高镁合金和镀锌钢焊缝的性能,在激光焊接过程中应用了超声波振动,并通过实验方法验证了超声波对力学性能的影响。设计了搭接焊缝激光焊接系统,增加了超声波振动模块和图像检测模块,可获得超声波振动对熔池区域的影响。在超声波振动功率分别为 1000 W 和 0 W 的条件下,比较了焊缝试样的熔池面积、金相组织、抗拉强度、断口形貌、硬度、残余应力、耐磨性和耐腐蚀性等特征。图像数据采集结构表明,超声波振动能有效减少熔池的无效面积,使熔池中的能量更加集中。在超声波振动的影响下,最大熔池面积减小到 5.38 mm2,变化范围为 3.9 %,气孔比例大大降低。研究发现,超声波振动能显著改善熔焊区的微观结构特征,平均晶粒尺寸减小到 23 μm。晶粒尺寸的减小和微观结构的细化有利于改善镁合金接头的机械性能,屈服强度提高了 6.5%。超声波振动对热影响区的硬度影响不大,但能使焊接区的平均硬度提高 5%以上,最大残余应力降低 50%以上。在不同的压力和摩擦速度条件下,最大磨损量可减少 25 % 以上。同时,抗氧化腐蚀和电化学腐蚀的能力也有一定程度的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of ultrasonic vibration in magnesium alloy lap welding
In order to enhance the performance of magnesium alloy and galvanized steel welds, ultrasonic vibration was applied to the laser welding process, and the effect of ultrasonic on mechanical properties was verified through experimental methods. The laser welding system for the lap weld seam was designed, and the ultrasonic vibration module and image detection module were added, which can obtain the influence of ultrasonic vibration on the molten pool area. Under the conditions of ultrasonic vibration power of 1000 W and 0 W, the characteristics of the weld pool area, metallographic structure, tensile strength, fracture morphology, hardness, residual stress, wear resistance, and corrosion resistance of the weld specimen were compared. The image data acquisition structure indicated that ultrasonic vibration can effectively reduce the ineffective area of the molten pool and make the energy in the molten pool more concentrated. Under the influence of ultrasonic vibration, the maximum molten pool area decreased to 5.38 mm2, with a variation range of 3.9 %, and the proportion of pores was greatly reduced. Research found that ultrasonic vibration can significantly improve the microstructure characteristics of the fusion welding zone, with an average grain size reduced to 23 μm. The reduction of grain size and refinement of microstructure were beneficial to the improvement of mechanical properties of magnesium alloy joints, with a yield strength increase of 6.5 %. Ultrasonic vibration had little effect on the hardness of the heat affected zone, it can increase the average hardness of the weld zone by more than 5 % and reduce the maximum residual stress by more than 50 %. Under different pressure and friction speed conditions, the maximum wear amount can be reduced by more than 25 %. At the same time, the resistance to oxidation corrosion and electrochemical corrosion also can be improved to a certain extent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Vibroengineering
Journal of Vibroengineering 工程技术-工程:机械
CiteScore
1.70
自引率
0.00%
发文量
97
审稿时长
4.5 months
期刊介绍: Journal of VIBROENGINEERING (JVE) ISSN 1392-8716 is a prestigious peer reviewed International Journal specializing in theoretical and practical aspects of Vibration Engineering. It is indexed in ESCI and other major databases. Published every 1.5 months (8 times yearly), the journal attracts attention from the International Engineering Community.
期刊最新文献
Effect of AVL-based time-domain analysis on torsional vibration of engine shafting Seismic performance of beam-type covered bridge considering the superstructure – substructure interaction and bearing mechanical property Fault diagnosis algorithm based on GADF-DFT and multi-kernel domain coordinated adaptive network A novel cross-domain identification method for bridge damage based on recurrence plot and convolutional neural networks Study on the mechanical characteristics and impact resistance improvement of substation masonry wall under flood load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1