Nina Hagmeyer, Daniel Costabel, Elisabeth Hofmeister, Afshin Nabiyan, Johannes Max, Felix H. Schacher, Kalina Peneva, Benjamin Dietzek-Ivanšić
{"title":"小变化,大影响:光氧化催化中过亚甲基单亚胺的自由基形成","authors":"Nina Hagmeyer, Daniel Costabel, Elisabeth Hofmeister, Afshin Nabiyan, Johannes Max, Felix H. Schacher, Kalina Peneva, Benjamin Dietzek-Ivanšić","doi":"10.1002/cptc.202400150","DOIUrl":null,"url":null,"abstract":"<p>The use of organic molecules as photosensitizers in photoredox catalysis is an attractive research field as it has the potential to replace conventionally used photosensitizers, which are based on rare metals. In the context of light-driven hydrogen evolution catalysis, the radical formation of two perylene monoimide dyes (PMIs) was studied by means of electron paramagnetic resonance (EPR) and UV/Vis spectroscopy. The PMIs were reduced and oxidized both photochemically and electrochemically to study the changes in absorption and EPR signature. A distinct differentiation between the two PMIs as well as a comparison between the oxidative and reductive processes can be made by EPR measurements. UV/Vis measurements showed different features under redox conditions. This study addresses a gap in understanding the radical intermediate formation during photocatalytic processes.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202400150","citationCount":"0","resultStr":"{\"title\":\"Small Changes, Big Impact: Radical Formation of Perylene Monoimides in Photoredox Catalysis\",\"authors\":\"Nina Hagmeyer, Daniel Costabel, Elisabeth Hofmeister, Afshin Nabiyan, Johannes Max, Felix H. Schacher, Kalina Peneva, Benjamin Dietzek-Ivanšić\",\"doi\":\"10.1002/cptc.202400150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The use of organic molecules as photosensitizers in photoredox catalysis is an attractive research field as it has the potential to replace conventionally used photosensitizers, which are based on rare metals. In the context of light-driven hydrogen evolution catalysis, the radical formation of two perylene monoimide dyes (PMIs) was studied by means of electron paramagnetic resonance (EPR) and UV/Vis spectroscopy. The PMIs were reduced and oxidized both photochemically and electrochemically to study the changes in absorption and EPR signature. A distinct differentiation between the two PMIs as well as a comparison between the oxidative and reductive processes can be made by EPR measurements. UV/Vis measurements showed different features under redox conditions. This study addresses a gap in understanding the radical intermediate formation during photocatalytic processes.</p>\",\"PeriodicalId\":10108,\"journal\":{\"name\":\"ChemPhotoChem\",\"volume\":\"8 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202400150\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPhotoChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cptc.202400150\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cptc.202400150","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Small Changes, Big Impact: Radical Formation of Perylene Monoimides in Photoredox Catalysis
The use of organic molecules as photosensitizers in photoredox catalysis is an attractive research field as it has the potential to replace conventionally used photosensitizers, which are based on rare metals. In the context of light-driven hydrogen evolution catalysis, the radical formation of two perylene monoimide dyes (PMIs) was studied by means of electron paramagnetic resonance (EPR) and UV/Vis spectroscopy. The PMIs were reduced and oxidized both photochemically and electrochemically to study the changes in absorption and EPR signature. A distinct differentiation between the two PMIs as well as a comparison between the oxidative and reductive processes can be made by EPR measurements. UV/Vis measurements showed different features under redox conditions. This study addresses a gap in understanding the radical intermediate formation during photocatalytic processes.