通过调整数字间电极的高度制作柔性电容式压力传感器

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-22 DOI:10.1021/acsaelm.4c00586
Jiapeng Tan, Peng Zhang, Kun Zhang, Xiaofei Bu, Gang Dou and Liangsong Huang*, 
{"title":"通过调整数字间电极的高度制作柔性电容式压力传感器","authors":"Jiapeng Tan,&nbsp;Peng Zhang,&nbsp;Kun Zhang,&nbsp;Xiaofei Bu,&nbsp;Gang Dou and Liangsong Huang*,&nbsp;","doi":"10.1021/acsaelm.4c00586","DOIUrl":null,"url":null,"abstract":"<p >Flexible pressure sensors have great application prospects in the fields of human–computer interaction and wearable electronic devices. Nowadays, the emergence of planar capacitive pressure sensors composed of an interdigital electrode has solved the problem of mechanical mismatch between the electrode layer and the dielectric layer during packaging and further realizes the miniaturization and thinness. However, there are few reports on whether adjusting the height of the interdigital electrode can improve the sensitivity of the sensor. This paper proposes a strategy based on dispensing technology to improve the performance of a capacitive pressure sensor by adjusting the height of the interdigital electrode. The results show that the optimal height of the interdigital electrode is 1.3 mm. On this basis, increasing the number of fingers of the interdigital electrode can also expand the sensitivity and detection range of the sensor. In order to further improve the performance of the sensor, we doped barium titanate with a high dielectric constant in the dielectric layer and introduced the pyramid microstructure. The test results show that our sensor has high sensitivity (0.6275 kPa<sup>–1</sup>, ≤1 kPa), wide detection range (0.5–166 kPa), fast response time (120 ms), and good stability after 10,000 cycles. In addition, the sensor can be applied to various pressure detection scenarios such as finger pressing, human joint motion detection, and grasping object detection. Meanwhile, we also constructed a 3 × 3 pressure sensor array to identify the distribution of the spatial pressure. This work provides a solution for preparing high-performance capacitive pressure sensors using an interdigital electrode, which has great application prospects in the field of intelligent wearables.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Flexible Capacitive Pressure Sensors by Adjusting the Height of the Interdigital Electrode\",\"authors\":\"Jiapeng Tan,&nbsp;Peng Zhang,&nbsp;Kun Zhang,&nbsp;Xiaofei Bu,&nbsp;Gang Dou and Liangsong Huang*,&nbsp;\",\"doi\":\"10.1021/acsaelm.4c00586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Flexible pressure sensors have great application prospects in the fields of human–computer interaction and wearable electronic devices. Nowadays, the emergence of planar capacitive pressure sensors composed of an interdigital electrode has solved the problem of mechanical mismatch between the electrode layer and the dielectric layer during packaging and further realizes the miniaturization and thinness. However, there are few reports on whether adjusting the height of the interdigital electrode can improve the sensitivity of the sensor. This paper proposes a strategy based on dispensing technology to improve the performance of a capacitive pressure sensor by adjusting the height of the interdigital electrode. The results show that the optimal height of the interdigital electrode is 1.3 mm. On this basis, increasing the number of fingers of the interdigital electrode can also expand the sensitivity and detection range of the sensor. In order to further improve the performance of the sensor, we doped barium titanate with a high dielectric constant in the dielectric layer and introduced the pyramid microstructure. The test results show that our sensor has high sensitivity (0.6275 kPa<sup>–1</sup>, ≤1 kPa), wide detection range (0.5–166 kPa), fast response time (120 ms), and good stability after 10,000 cycles. In addition, the sensor can be applied to various pressure detection scenarios such as finger pressing, human joint motion detection, and grasping object detection. Meanwhile, we also constructed a 3 × 3 pressure sensor array to identify the distribution of the spatial pressure. This work provides a solution for preparing high-performance capacitive pressure sensors using an interdigital electrode, which has great application prospects in the field of intelligent wearables.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.4c00586\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c00586","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

柔性压力传感器在人机交互和可穿戴电子设备领域有着广阔的应用前景。如今,由数字间电极组成的平面电容式压力传感器的出现,解决了电极层和介电层在封装过程中的机械不匹配问题,进一步实现了微型化和薄型化。然而,关于调整数字间电极的高度是否能提高传感器灵敏度的报道却很少。本文提出了一种基于点胶技术的策略,通过调整数字间电极的高度来提高电容式压力传感器的性能。结果表明,数字间电极的最佳高度为 1.3 毫米。在此基础上,增加指间电极的指数还能扩大传感器的灵敏度和检测范围。为了进一步提高传感器的性能,我们在介电层中掺入了高介电常数的钛酸钡,并引入了金字塔微结构。测试结果表明,我们的传感器具有灵敏度高(0.6275 kPa-1, ≤1 kPa)、检测范围宽(0.5-166 kPa)、响应时间快(120 ms)以及经过 10,000 次循环后稳定性好等特点。此外,该传感器还可应用于各种压力检测场景,如手指按压、人体关节运动检测和抓取物体检测等。同时,我们还构建了一个 3 × 3 压力传感器阵列,以识别空间压力的分布。这项工作为利用数字间电极制备高性能电容式压力传感器提供了一种解决方案,在智能可穿戴设备领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of Flexible Capacitive Pressure Sensors by Adjusting the Height of the Interdigital Electrode

Flexible pressure sensors have great application prospects in the fields of human–computer interaction and wearable electronic devices. Nowadays, the emergence of planar capacitive pressure sensors composed of an interdigital electrode has solved the problem of mechanical mismatch between the electrode layer and the dielectric layer during packaging and further realizes the miniaturization and thinness. However, there are few reports on whether adjusting the height of the interdigital electrode can improve the sensitivity of the sensor. This paper proposes a strategy based on dispensing technology to improve the performance of a capacitive pressure sensor by adjusting the height of the interdigital electrode. The results show that the optimal height of the interdigital electrode is 1.3 mm. On this basis, increasing the number of fingers of the interdigital electrode can also expand the sensitivity and detection range of the sensor. In order to further improve the performance of the sensor, we doped barium titanate with a high dielectric constant in the dielectric layer and introduced the pyramid microstructure. The test results show that our sensor has high sensitivity (0.6275 kPa–1, ≤1 kPa), wide detection range (0.5–166 kPa), fast response time (120 ms), and good stability after 10,000 cycles. In addition, the sensor can be applied to various pressure detection scenarios such as finger pressing, human joint motion detection, and grasping object detection. Meanwhile, we also constructed a 3 × 3 pressure sensor array to identify the distribution of the spatial pressure. This work provides a solution for preparing high-performance capacitive pressure sensors using an interdigital electrode, which has great application prospects in the field of intelligent wearables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Issue Publication Information Issue Editorial Masthead Room Temperature Real Air Highly Sensitive and Selective Detection of Ethanol and Ammonia Molecules Using Tin Nanoparticle-Functionalized Graphene Sensors Two-Dimensional Magnetic Semiconductors by Substitutional Doping of Monolayer PtS2 Green Durable Biomechanical Sensor Based on a Cation-Enhanced Hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1