{"title":"多序列生成对抗网络:更好地生成增强型磁共振成像图像","authors":"Leizi Li, Jingchun Yu, Yijin Li, Jinbo Wei, Ruifang Fan, Dieen Wu, Yufeng Ye","doi":"10.3389/fncom.2024.1365238","DOIUrl":null,"url":null,"abstract":"MRI is one of the commonly used diagnostic methods in clinical practice, especially in brain diseases. There are many sequences in MRI, but T1CE images can only be obtained by using contrast agents. Many patients (such as cancer patients) must undergo alignment of multiple MRI sequences for diagnosis, especially the contrast-enhanced magnetic resonance sequence. However, some patients such as pregnant women, children, etc. find it difficult to use contrast agents to obtain enhanced sequences, and contrast agents have many adverse reactions, which can pose a significant risk. With the continuous development of deep learning, the emergence of generative adversarial networks makes it possible to extract features from one type of image to generate another type of image.We propose a generative adversarial network model with multimodal inputs and end-to-end decoding based on the pix2pix model. For the pix2pix model, we used four evaluation metrics: NMSE, RMSE, SSIM, and PNSR to assess the effectiveness of our generated model.Through statistical analysis, we compared our proposed new model with pix2pix and found significant differences between the two. Our model outperformed pix2pix, with higher SSIM and PNSR, lower NMSE and RMSE. We also found that the input of T1W images and T2W images had better effects than other combinations, providing new ideas for subsequent work on generating magnetic resonance enhancement sequence images. By using our model, it is possible to generate magnetic resonance enhanced sequence images based on magnetic resonance non-enhanced sequence images.This has significant implications as it can greatly reduce the use of contrast agents to protect populations such as pregnant women and children who are contraindicated for contrast agents. Additionally, contrast agents are relatively expensive, and this generation method may bring about substantial economic benefits.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-sequence generative adversarial network: better generation for enhanced magnetic resonance imaging images\",\"authors\":\"Leizi Li, Jingchun Yu, Yijin Li, Jinbo Wei, Ruifang Fan, Dieen Wu, Yufeng Ye\",\"doi\":\"10.3389/fncom.2024.1365238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MRI is one of the commonly used diagnostic methods in clinical practice, especially in brain diseases. There are many sequences in MRI, but T1CE images can only be obtained by using contrast agents. Many patients (such as cancer patients) must undergo alignment of multiple MRI sequences for diagnosis, especially the contrast-enhanced magnetic resonance sequence. However, some patients such as pregnant women, children, etc. find it difficult to use contrast agents to obtain enhanced sequences, and contrast agents have many adverse reactions, which can pose a significant risk. With the continuous development of deep learning, the emergence of generative adversarial networks makes it possible to extract features from one type of image to generate another type of image.We propose a generative adversarial network model with multimodal inputs and end-to-end decoding based on the pix2pix model. For the pix2pix model, we used four evaluation metrics: NMSE, RMSE, SSIM, and PNSR to assess the effectiveness of our generated model.Through statistical analysis, we compared our proposed new model with pix2pix and found significant differences between the two. Our model outperformed pix2pix, with higher SSIM and PNSR, lower NMSE and RMSE. We also found that the input of T1W images and T2W images had better effects than other combinations, providing new ideas for subsequent work on generating magnetic resonance enhancement sequence images. By using our model, it is possible to generate magnetic resonance enhanced sequence images based on magnetic resonance non-enhanced sequence images.This has significant implications as it can greatly reduce the use of contrast agents to protect populations such as pregnant women and children who are contraindicated for contrast agents. Additionally, contrast agents are relatively expensive, and this generation method may bring about substantial economic benefits.\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2024.1365238\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1365238","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Multi-sequence generative adversarial network: better generation for enhanced magnetic resonance imaging images
MRI is one of the commonly used diagnostic methods in clinical practice, especially in brain diseases. There are many sequences in MRI, but T1CE images can only be obtained by using contrast agents. Many patients (such as cancer patients) must undergo alignment of multiple MRI sequences for diagnosis, especially the contrast-enhanced magnetic resonance sequence. However, some patients such as pregnant women, children, etc. find it difficult to use contrast agents to obtain enhanced sequences, and contrast agents have many adverse reactions, which can pose a significant risk. With the continuous development of deep learning, the emergence of generative adversarial networks makes it possible to extract features from one type of image to generate another type of image.We propose a generative adversarial network model with multimodal inputs and end-to-end decoding based on the pix2pix model. For the pix2pix model, we used four evaluation metrics: NMSE, RMSE, SSIM, and PNSR to assess the effectiveness of our generated model.Through statistical analysis, we compared our proposed new model with pix2pix and found significant differences between the two. Our model outperformed pix2pix, with higher SSIM and PNSR, lower NMSE and RMSE. We also found that the input of T1W images and T2W images had better effects than other combinations, providing new ideas for subsequent work on generating magnetic resonance enhancement sequence images. By using our model, it is possible to generate magnetic resonance enhanced sequence images based on magnetic resonance non-enhanced sequence images.This has significant implications as it can greatly reduce the use of contrast agents to protect populations such as pregnant women and children who are contraindicated for contrast agents. Additionally, contrast agents are relatively expensive, and this generation method may bring about substantial economic benefits.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro