Martina Ratko, Vladiana Crljen, Martina Tkalčić, Anton Mažuranić, Pero Bubalo, Petar Škavić, Ivan Banovac, Aleksandra Dugandžić
{"title":"人类前额叶皮层中鸟苷酸环化酶 C 的表达取决于性别和进食状态","authors":"Martina Ratko, Vladiana Crljen, Martina Tkalčić, Anton Mažuranić, Pero Bubalo, Petar Škavić, Ivan Banovac, Aleksandra Dugandžić","doi":"10.3389/fnmol.2024.1361089","DOIUrl":null,"url":null,"abstract":"Guanylate cyclase C (GC-C) has been detected in the rodent brain in neurons of the cerebral cortex, amygdala, midbrain, hypothalamus, and cerebellum.In this study we determined GC-C protein expression in Brodmann areas (BA) 9, BA10, BA11, and BA32 of the human prefrontal cortex involved in regulation of feeding behavior, as well as in the cerebellar cortex, arcuate nucleus of hypothalamus and substantia nigra in brain samples of human 21 male and 13 female brains by ELISA with postmortem delay < 24 h.GC-C was found in all tested brain areas and it was expressed in neurons of the third cortical layer of BA9. The regulation of GC-C expression by feeding was found in male BA11 and BA10-M, where GC-C expression was in negative correlation to the volume of stomach content during autopsy. In female BA11 there was no correlation detected, while in BA10-M there was even positive correlation. This suggests sex differences in GC-C expression regulation in BA11 and BA10-M. The amount of GC-C was higher in female BA9 only when the death occurred shortly after a meal, while expression of GC-C was higher in BA10-O only when the stomach was empty. The expression of GC-C in female hypothalamus was lower when compared to male hypothalamus only when the stomach was full, suggesting possibly lower satiety effects of GC-C agonists in women.These results point toward the possible role of GC-C in regulation of feeding behavior. Since, this is first study of GC-C regulation and its possible function in prefrontal cortex, to determine exact role of GC-C in different region of prefrontal cortex, especially in humans, need further studies.","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expression of guanylate cyclase C in human prefrontal cortex depends on sex and feeding status\",\"authors\":\"Martina Ratko, Vladiana Crljen, Martina Tkalčić, Anton Mažuranić, Pero Bubalo, Petar Škavić, Ivan Banovac, Aleksandra Dugandžić\",\"doi\":\"10.3389/fnmol.2024.1361089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Guanylate cyclase C (GC-C) has been detected in the rodent brain in neurons of the cerebral cortex, amygdala, midbrain, hypothalamus, and cerebellum.In this study we determined GC-C protein expression in Brodmann areas (BA) 9, BA10, BA11, and BA32 of the human prefrontal cortex involved in regulation of feeding behavior, as well as in the cerebellar cortex, arcuate nucleus of hypothalamus and substantia nigra in brain samples of human 21 male and 13 female brains by ELISA with postmortem delay < 24 h.GC-C was found in all tested brain areas and it was expressed in neurons of the third cortical layer of BA9. The regulation of GC-C expression by feeding was found in male BA11 and BA10-M, where GC-C expression was in negative correlation to the volume of stomach content during autopsy. In female BA11 there was no correlation detected, while in BA10-M there was even positive correlation. This suggests sex differences in GC-C expression regulation in BA11 and BA10-M. The amount of GC-C was higher in female BA9 only when the death occurred shortly after a meal, while expression of GC-C was higher in BA10-O only when the stomach was empty. The expression of GC-C in female hypothalamus was lower when compared to male hypothalamus only when the stomach was full, suggesting possibly lower satiety effects of GC-C agonists in women.These results point toward the possible role of GC-C in regulation of feeding behavior. Since, this is first study of GC-C regulation and its possible function in prefrontal cortex, to determine exact role of GC-C in different region of prefrontal cortex, especially in humans, need further studies.\",\"PeriodicalId\":12630,\"journal\":{\"name\":\"Frontiers in Molecular Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Molecular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnmol.2024.1361089\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnmol.2024.1361089","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Expression of guanylate cyclase C in human prefrontal cortex depends on sex and feeding status
Guanylate cyclase C (GC-C) has been detected in the rodent brain in neurons of the cerebral cortex, amygdala, midbrain, hypothalamus, and cerebellum.In this study we determined GC-C protein expression in Brodmann areas (BA) 9, BA10, BA11, and BA32 of the human prefrontal cortex involved in regulation of feeding behavior, as well as in the cerebellar cortex, arcuate nucleus of hypothalamus and substantia nigra in brain samples of human 21 male and 13 female brains by ELISA with postmortem delay < 24 h.GC-C was found in all tested brain areas and it was expressed in neurons of the third cortical layer of BA9. The regulation of GC-C expression by feeding was found in male BA11 and BA10-M, where GC-C expression was in negative correlation to the volume of stomach content during autopsy. In female BA11 there was no correlation detected, while in BA10-M there was even positive correlation. This suggests sex differences in GC-C expression regulation in BA11 and BA10-M. The amount of GC-C was higher in female BA9 only when the death occurred shortly after a meal, while expression of GC-C was higher in BA10-O only when the stomach was empty. The expression of GC-C in female hypothalamus was lower when compared to male hypothalamus only when the stomach was full, suggesting possibly lower satiety effects of GC-C agonists in women.These results point toward the possible role of GC-C in regulation of feeding behavior. Since, this is first study of GC-C regulation and its possible function in prefrontal cortex, to determine exact role of GC-C in different region of prefrontal cortex, especially in humans, need further studies.
期刊介绍:
Frontiers in Molecular Neuroscience is a first-tier electronic journal devoted to identifying key molecules, as well as their functions and interactions, that underlie the structure, design and function of the brain across all levels. The scope of our journal encompasses synaptic and cellular proteins, coding and non-coding RNA, and molecular mechanisms regulating cellular and dendritic RNA translation. In recent years, a plethora of new cellular and synaptic players have been identified from reduced systems, such as neuronal cultures, but the relevance of these molecules in terms of cellular and synaptic function and plasticity in the living brain and its circuits has not been validated. The effects of spine growth and density observed using gene products identified from in vitro work are frequently not reproduced in vivo. Our journal is particularly interested in studies on genetically engineered model organisms (C. elegans, Drosophila, mouse), in which alterations in key molecules underlying cellular and synaptic function and plasticity produce defined anatomical, physiological and behavioral changes. In the mouse, genetic alterations limited to particular neural circuits (olfactory bulb, motor cortex, cortical layers, hippocampal subfields, cerebellum), preferably regulated in time and on demand, are of special interest, as they sidestep potential compensatory developmental effects.