{"title":"用红细胞膜对脱细胞基质进行大规模表面改性,促进心脏瓣膜的原位再生","authors":"","doi":"10.1016/j.eng.2024.04.019","DOIUrl":null,"url":null,"abstract":"<div><div><em>In situ</em> regeneration is a promising strategy for constructing tissue engineering heart valves (TEHVs). Currently, the decellularized heart valve (DHV) is extensively employed as a TEHV scaffold. Nevertheless, DHV exhibits limited blood compatibility and notable difficulties in endothelialization, resulting in thrombosis and graft failure. The red blood cell membrane (RBCM) exhibits excellent biocompatibility and prolonged circulation stability and is extensively applied in the camouflage of nanoparticles for drug delivery; however, there is no report on its application for large-scale modification of decellularized extracellular matrix (ECM). For the first time, we utilized a layer-by-layer assembling strategy to immobilize RBCM on the surface of DHV and construct an innovative TEHV scaffold. Our findings demonstrated that the scaffold significantly improved the hemocompatibility of DHV by effectively preventing plasma protein adsorption, activated platelet adhesion, and erythrocyte aggregation, and induced macrophage polarization toward the M2 phenotype <em>in vitro</em>. Moreover, RBCM modification significantly enhanced the mechanical properties and enzymatic stability of DHV. The rat models of subcutaneous embedding and abdominal aorta implantation showed that the scaffold regulated the polarization of macrophages into the anti-inflammatory and pro-modeling M2 phenotype and promoted endothelialization and ECM remodeling in the early stage without thrombosis and calcification. The novel TEHV exhibits excellent performance and can overcome the limitations of commonly used clinical prostheses.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"41 ","pages":"Pages 216-230"},"PeriodicalIF":10.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-Scale Surface Modification of Decellularized Matrix with Erythrocyte Membrane for Promoting In Situ Regeneration of Heart Valve\",\"authors\":\"\",\"doi\":\"10.1016/j.eng.2024.04.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>In situ</em> regeneration is a promising strategy for constructing tissue engineering heart valves (TEHVs). Currently, the decellularized heart valve (DHV) is extensively employed as a TEHV scaffold. Nevertheless, DHV exhibits limited blood compatibility and notable difficulties in endothelialization, resulting in thrombosis and graft failure. The red blood cell membrane (RBCM) exhibits excellent biocompatibility and prolonged circulation stability and is extensively applied in the camouflage of nanoparticles for drug delivery; however, there is no report on its application for large-scale modification of decellularized extracellular matrix (ECM). For the first time, we utilized a layer-by-layer assembling strategy to immobilize RBCM on the surface of DHV and construct an innovative TEHV scaffold. Our findings demonstrated that the scaffold significantly improved the hemocompatibility of DHV by effectively preventing plasma protein adsorption, activated platelet adhesion, and erythrocyte aggregation, and induced macrophage polarization toward the M2 phenotype <em>in vitro</em>. Moreover, RBCM modification significantly enhanced the mechanical properties and enzymatic stability of DHV. The rat models of subcutaneous embedding and abdominal aorta implantation showed that the scaffold regulated the polarization of macrophages into the anti-inflammatory and pro-modeling M2 phenotype and promoted endothelialization and ECM remodeling in the early stage without thrombosis and calcification. The novel TEHV exhibits excellent performance and can overcome the limitations of commonly used clinical prostheses.</div></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"41 \",\"pages\":\"Pages 216-230\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809924002558\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924002558","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Large-Scale Surface Modification of Decellularized Matrix with Erythrocyte Membrane for Promoting In Situ Regeneration of Heart Valve
In situ regeneration is a promising strategy for constructing tissue engineering heart valves (TEHVs). Currently, the decellularized heart valve (DHV) is extensively employed as a TEHV scaffold. Nevertheless, DHV exhibits limited blood compatibility and notable difficulties in endothelialization, resulting in thrombosis and graft failure. The red blood cell membrane (RBCM) exhibits excellent biocompatibility and prolonged circulation stability and is extensively applied in the camouflage of nanoparticles for drug delivery; however, there is no report on its application for large-scale modification of decellularized extracellular matrix (ECM). For the first time, we utilized a layer-by-layer assembling strategy to immobilize RBCM on the surface of DHV and construct an innovative TEHV scaffold. Our findings demonstrated that the scaffold significantly improved the hemocompatibility of DHV by effectively preventing plasma protein adsorption, activated platelet adhesion, and erythrocyte aggregation, and induced macrophage polarization toward the M2 phenotype in vitro. Moreover, RBCM modification significantly enhanced the mechanical properties and enzymatic stability of DHV. The rat models of subcutaneous embedding and abdominal aorta implantation showed that the scaffold regulated the polarization of macrophages into the anti-inflammatory and pro-modeling M2 phenotype and promoted endothelialization and ECM remodeling in the early stage without thrombosis and calcification. The novel TEHV exhibits excellent performance and can overcome the limitations of commonly used clinical prostheses.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.