几何设计变量对 Titling 骨锚植入配置和固定刚度的影响:参数有限元研究

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Medical Engineering & Physics Pub Date : 2024-05-23 DOI:10.1016/j.medengphy.2024.104191
Ali Abedi , Farzam Farahmand , Leila Oryadi Zanjani , Mohammad Hossein Nabian
{"title":"几何设计变量对 Titling 骨锚植入配置和固定刚度的影响:参数有限元研究","authors":"Ali Abedi ,&nbsp;Farzam Farahmand ,&nbsp;Leila Oryadi Zanjani ,&nbsp;Mohammad Hossein Nabian","doi":"10.1016/j.medengphy.2024.104191","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanical interaction of a tilting anchor and cancellous bones of various densities was simulated using finite element modeling. The model enjoyed a sophisticated representation of the bone, as an elasto-plastic material with large deformation capability. The anchor's tilting action during implantation phase, as well as its fixation stiffness during pull-out test, were predicted by the model and a parametric study was performed to investigate the effects of the anchor's distal width and corner fillet radius, on these measures. The model predictions were validated against the results of an experimental test on ovine humerus specimens. The model could reasonably reproduce the tilting action of the anchor during the implantation phase. Comparison of the model predictions with the experimental results revealed similar trends during both the implantation and the pull-out phases, but smaller displacement magnitudes (end points: 1.4 vs. 2.1 mm and 4.6 vs. 5.2 mm, respectively). The results of the parametric study indicated substantial increase in the fixation stiffness with increasing bone density. Reducing the distal width and increasing the fillet radius improved the anchor's implantation configuration and fixation stiffness in low-density bones. For high-density bone applications, however, a larger distal width was favored for improving the fixation stiffness.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of geometrical design variables on implantation configuration and fixation stiffness of titling bone anchors: A parametric finite element study\",\"authors\":\"Ali Abedi ,&nbsp;Farzam Farahmand ,&nbsp;Leila Oryadi Zanjani ,&nbsp;Mohammad Hossein Nabian\",\"doi\":\"10.1016/j.medengphy.2024.104191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mechanical interaction of a tilting anchor and cancellous bones of various densities was simulated using finite element modeling. The model enjoyed a sophisticated representation of the bone, as an elasto-plastic material with large deformation capability. The anchor's tilting action during implantation phase, as well as its fixation stiffness during pull-out test, were predicted by the model and a parametric study was performed to investigate the effects of the anchor's distal width and corner fillet radius, on these measures. The model predictions were validated against the results of an experimental test on ovine humerus specimens. The model could reasonably reproduce the tilting action of the anchor during the implantation phase. Comparison of the model predictions with the experimental results revealed similar trends during both the implantation and the pull-out phases, but smaller displacement magnitudes (end points: 1.4 vs. 2.1 mm and 4.6 vs. 5.2 mm, respectively). The results of the parametric study indicated substantial increase in the fixation stiffness with increasing bone density. Reducing the distal width and increasing the fillet radius improved the anchor's implantation configuration and fixation stiffness in low-density bones. For high-density bone applications, however, a larger distal width was favored for improving the fixation stiffness.</p></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453324000924\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324000924","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用有限元模型模拟了倾斜锚和不同密度的松质骨之间的机械相互作用。该模型将骨作为一种具有大变形能力的弹塑性材料进行了复杂的表示。该模型预测了锚在植入阶段的倾斜动作,以及在拔出测试中的固定刚度,并进行了参数研究,以探讨锚的远端宽度和角圆角半径对这些指标的影响。模型预测结果与绵羊肱骨标本的实验测试结果进行了验证。模型合理地再现了锚在植入阶段的倾斜动作。将模型预测与实验结果进行比较后发现,植入和拔出阶段的趋势相似,但位移幅度较小(终点分别为 1.4 毫米和 2.1 毫米,以及 4.6 毫米和 5.2 毫米)。参数研究结果表明,随着骨密度的增加,固定刚度也会大幅增加。在低密度骨中,减小远端宽度和增大圆角半径改善了锚的植入配置和固定刚度。然而,在高密度骨骼应用中,较大的远端宽度更有利于提高固定刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of geometrical design variables on implantation configuration and fixation stiffness of titling bone anchors: A parametric finite element study

The mechanical interaction of a tilting anchor and cancellous bones of various densities was simulated using finite element modeling. The model enjoyed a sophisticated representation of the bone, as an elasto-plastic material with large deformation capability. The anchor's tilting action during implantation phase, as well as its fixation stiffness during pull-out test, were predicted by the model and a parametric study was performed to investigate the effects of the anchor's distal width and corner fillet radius, on these measures. The model predictions were validated against the results of an experimental test on ovine humerus specimens. The model could reasonably reproduce the tilting action of the anchor during the implantation phase. Comparison of the model predictions with the experimental results revealed similar trends during both the implantation and the pull-out phases, but smaller displacement magnitudes (end points: 1.4 vs. 2.1 mm and 4.6 vs. 5.2 mm, respectively). The results of the parametric study indicated substantial increase in the fixation stiffness with increasing bone density. Reducing the distal width and increasing the fillet radius improved the anchor's implantation configuration and fixation stiffness in low-density bones. For high-density bone applications, however, a larger distal width was favored for improving the fixation stiffness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
期刊最新文献
Monitoring focused ultrasound ablation surgery (FUAS) using echo amplitudes of the therapeutic focused transducer 3D bioheat transfer mapping reveals nanomagnetic particles effectiveness in radiofrequency hyperthermia breast cancer treatment comparing to experimental study Bone ingrowth in randomly distributed porous interbody cage during lumbar spinal fusion A method of nucleus image segmentation and counting based on TC-UNet++ and distance watershed Integrated analysis of clinical indicators and mechanical properties in cancellous bone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1