Ramisa Fariha, Emma Rothkopf, John Murphy, Nondi Walters, Oluwanifemi David Okoh, Nabil M. Lawandy, Anubhav Tripathi
{"title":"使用 LC-MS/MS 分析类固醇的电场辅助干血样制备方法","authors":"Ramisa Fariha, Emma Rothkopf, John Murphy, Nondi Walters, Oluwanifemi David Okoh, Nabil M. Lawandy, Anubhav Tripathi","doi":"10.1016/j.sampre.2024.100115","DOIUrl":null,"url":null,"abstract":"<div><p>Despite being a minimally invasive sample source, dried blood spots (DBS) generally pose the challenge of efficient sample extraction for broad metabolomics applications. This is particularly true for the quantification of steroids using non-derivatized liquid chromatography tandem mass spectrometry assays. To address these limitations, we have demonstrated the use of electric field as a driver for sample preparation from DBS samples to simultaneously quantify testosterone (T), 17α-hydroxyprogesterone (17-OHP), progesterone (P), and cortisol (C), using both standard electroporation cuvettes, as well as a novel custom vertical electric field setup. Our findings, backed by computational modeling, show that a 10V DC application for 180 s can draw out twice the amount of the aforementioned steroids from both Whatman-903 and DMPK-C sample collection cards using our novel device when compared to standard solvent-based collection methods. This study not only introduces the use of electric field for sample preparation for metabolomics, but additionally introduces a novel device that eliminates the electric double layer effect in the process.</p></div>","PeriodicalId":100052,"journal":{"name":"Advances in Sample Preparation","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772582024000147/pdfft?md5=1e87ac8cf644213ba412e595abca12e2&pid=1-s2.0-S2772582024000147-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Electric field-assisted dried blood spot sample preparation for analysis of steroids using LC–MS/MS\",\"authors\":\"Ramisa Fariha, Emma Rothkopf, John Murphy, Nondi Walters, Oluwanifemi David Okoh, Nabil M. Lawandy, Anubhav Tripathi\",\"doi\":\"10.1016/j.sampre.2024.100115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite being a minimally invasive sample source, dried blood spots (DBS) generally pose the challenge of efficient sample extraction for broad metabolomics applications. This is particularly true for the quantification of steroids using non-derivatized liquid chromatography tandem mass spectrometry assays. To address these limitations, we have demonstrated the use of electric field as a driver for sample preparation from DBS samples to simultaneously quantify testosterone (T), 17α-hydroxyprogesterone (17-OHP), progesterone (P), and cortisol (C), using both standard electroporation cuvettes, as well as a novel custom vertical electric field setup. Our findings, backed by computational modeling, show that a 10V DC application for 180 s can draw out twice the amount of the aforementioned steroids from both Whatman-903 and DMPK-C sample collection cards using our novel device when compared to standard solvent-based collection methods. This study not only introduces the use of electric field for sample preparation for metabolomics, but additionally introduces a novel device that eliminates the electric double layer effect in the process.</p></div>\",\"PeriodicalId\":100052,\"journal\":{\"name\":\"Advances in Sample Preparation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772582024000147/pdfft?md5=1e87ac8cf644213ba412e595abca12e2&pid=1-s2.0-S2772582024000147-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Sample Preparation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772582024000147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Sample Preparation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772582024000147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Electric field-assisted dried blood spot sample preparation for analysis of steroids using LC–MS/MS
Despite being a minimally invasive sample source, dried blood spots (DBS) generally pose the challenge of efficient sample extraction for broad metabolomics applications. This is particularly true for the quantification of steroids using non-derivatized liquid chromatography tandem mass spectrometry assays. To address these limitations, we have demonstrated the use of electric field as a driver for sample preparation from DBS samples to simultaneously quantify testosterone (T), 17α-hydroxyprogesterone (17-OHP), progesterone (P), and cortisol (C), using both standard electroporation cuvettes, as well as a novel custom vertical electric field setup. Our findings, backed by computational modeling, show that a 10V DC application for 180 s can draw out twice the amount of the aforementioned steroids from both Whatman-903 and DMPK-C sample collection cards using our novel device when compared to standard solvent-based collection methods. This study not only introduces the use of electric field for sample preparation for metabolomics, but additionally introduces a novel device that eliminates the electric double layer effect in the process.