人工 SEI 中三方 H 键构建的动态物理网络可塑造超长寿命的无树枝状突变锂金属阳极

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-06-01 DOI:10.1016/j.mattod.2024.04.011
Qingping Wu, Yuhan Mei, Haicai Huang, Feixiang Zhou, Huan Li, Houyang Chen
{"title":"人工 SEI 中三方 H 键构建的动态物理网络可塑造超长寿命的无树枝状突变锂金属阳极","authors":"Qingping Wu,&nbsp;Yuhan Mei,&nbsp;Haicai Huang,&nbsp;Feixiang Zhou,&nbsp;Huan Li,&nbsp;Houyang Chen","doi":"10.1016/j.mattod.2024.04.011","DOIUrl":null,"url":null,"abstract":"<div><p>Constructing artificial solid electrolyte interfaces (SEIs) to shape dendrite-free lithium (Li)-metal anodes remains challenges. Herein, we designed dynamic physical network (DPN) with abundant lithiophilic/anionphilic groups through tripartite hydrogen bonds (H-bonds), serving as artificial SEIs in high-loading NCM811-Li metal batteries. The formation and dissociation of DPN endowed by tripartite H-bonds under tension release during Li plating/stripping cycling skillfully balance the contradiction between mechanical robustness and deformability. Li<img>O bonds between lithiophilic sites and Li ions, and extra H-bonds between hydroxyl and electrolyte anions, endow DPN with functions of homogenizing Li-ion flux and accelerating its desolvation, synergistically achieving the uniform Li-ion deposition and weakening the charge shielding. The artificial SEI enhanced Li-anode (DPN@Li) withstood repeated Li ions plating/stripping processes for over 1000 h, which is 5 times longer than pure Li-anodes, and maintained low overpotential at a high current density of 10 mA cm<sup>−2</sup>. DPN@Li-based NCM811 full cells deliver high specific capacities and outstanding cycle life over 3000 cycles. Further, DPN@Li possesses excellent electrochemical performance in the high active material loading (7.84 mg cm<sup>−2</sup>) and foldable pouch cells. This work provides a conceptual framework of DPN constructed by multiple weak intermolecular interaction for artificial SEI to shape anode performance, and achieves the idea with a facile manner and simple chemical substances to promote practical applications of LMBs.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"75 ","pages":"Pages 112-124"},"PeriodicalIF":21.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic physical network constructed by tripartite H-bonds in artificial SEI to shape ultra-long life dendrite-free lithium-metal anodes\",\"authors\":\"Qingping Wu,&nbsp;Yuhan Mei,&nbsp;Haicai Huang,&nbsp;Feixiang Zhou,&nbsp;Huan Li,&nbsp;Houyang Chen\",\"doi\":\"10.1016/j.mattod.2024.04.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Constructing artificial solid electrolyte interfaces (SEIs) to shape dendrite-free lithium (Li)-metal anodes remains challenges. Herein, we designed dynamic physical network (DPN) with abundant lithiophilic/anionphilic groups through tripartite hydrogen bonds (H-bonds), serving as artificial SEIs in high-loading NCM811-Li metal batteries. The formation and dissociation of DPN endowed by tripartite H-bonds under tension release during Li plating/stripping cycling skillfully balance the contradiction between mechanical robustness and deformability. Li<img>O bonds between lithiophilic sites and Li ions, and extra H-bonds between hydroxyl and electrolyte anions, endow DPN with functions of homogenizing Li-ion flux and accelerating its desolvation, synergistically achieving the uniform Li-ion deposition and weakening the charge shielding. The artificial SEI enhanced Li-anode (DPN@Li) withstood repeated Li ions plating/stripping processes for over 1000 h, which is 5 times longer than pure Li-anodes, and maintained low overpotential at a high current density of 10 mA cm<sup>−2</sup>. DPN@Li-based NCM811 full cells deliver high specific capacities and outstanding cycle life over 3000 cycles. Further, DPN@Li possesses excellent electrochemical performance in the high active material loading (7.84 mg cm<sup>−2</sup>) and foldable pouch cells. This work provides a conceptual framework of DPN constructed by multiple weak intermolecular interaction for artificial SEI to shape anode performance, and achieves the idea with a facile manner and simple chemical substances to promote practical applications of LMBs.</p></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"75 \",\"pages\":\"Pages 112-124\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124000762\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124000762","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

构建人工固体电解质界面(SEIs)以形成无树枝状晶粒的锂(Li)金属阳极仍然是一项挑战。在此,我们通过三方氢键(H-bonds)设计了具有丰富亲锂/亲阴离子基团的动态物理网络(DPN),作为高负载 NCM811 锂金属电池中的人工 SEI。在锂电镀/剥离循环过程中,三方氢键所赋予的 DPN 在张力释放下的形成和解离巧妙地平衡了机械坚固性和变形性之间的矛盾。亲锂位点与锂离子之间的 LiO 键以及羟基与电解质阴离子之间的额外 H 键赋予了 DPN 均化锂离子通量和加速其脱溶的功能,协同实现了锂离子的均匀沉积并削弱了电荷屏蔽。人工 SEI 增强锂阳极(DPN@Li)经受住了超过 1000 小时的反复锂离子电镀/剥离过程,是纯锂离子阳极的 5 倍,并且在 10 mA cm-2 的高电流密度下保持了较低的过电位。基于 DPN@Li 的 NCM811 全电池具有高比容量和超过 3000 次循环的出色循环寿命。此外,DPN@Li 在高活性材料负载(7.84 毫克 cm-2)和可折叠袋状电池中具有优异的电化学性能。这项工作提供了一个通过多重弱分子间相互作用构建 DPN 的概念框架,用于人工 SEI 以塑造阳极性能,并以简便的方式和简单的化学物质实现了这一想法,从而促进了 LMB 的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic physical network constructed by tripartite H-bonds in artificial SEI to shape ultra-long life dendrite-free lithium-metal anodes

Constructing artificial solid electrolyte interfaces (SEIs) to shape dendrite-free lithium (Li)-metal anodes remains challenges. Herein, we designed dynamic physical network (DPN) with abundant lithiophilic/anionphilic groups through tripartite hydrogen bonds (H-bonds), serving as artificial SEIs in high-loading NCM811-Li metal batteries. The formation and dissociation of DPN endowed by tripartite H-bonds under tension release during Li plating/stripping cycling skillfully balance the contradiction between mechanical robustness and deformability. LiO bonds between lithiophilic sites and Li ions, and extra H-bonds between hydroxyl and electrolyte anions, endow DPN with functions of homogenizing Li-ion flux and accelerating its desolvation, synergistically achieving the uniform Li-ion deposition and weakening the charge shielding. The artificial SEI enhanced Li-anode (DPN@Li) withstood repeated Li ions plating/stripping processes for over 1000 h, which is 5 times longer than pure Li-anodes, and maintained low overpotential at a high current density of 10 mA cm−2. DPN@Li-based NCM811 full cells deliver high specific capacities and outstanding cycle life over 3000 cycles. Further, DPN@Li possesses excellent electrochemical performance in the high active material loading (7.84 mg cm−2) and foldable pouch cells. This work provides a conceptual framework of DPN constructed by multiple weak intermolecular interaction for artificial SEI to shape anode performance, and achieves the idea with a facile manner and simple chemical substances to promote practical applications of LMBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board Editorial Board Triboelectrification-induced electroluminescent skin for real-time information recording at a record low pressure threshold of 0.125 kPa Porous materials MOFs and COFs: Energy-saving adsorbents for atmospheric water harvesting The rise of 3D/4D-printed water harvesting materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1