计算重力流瞬时体积的数学模型:以意外释放的混合机制和体积增长为重点的实验分析

IF 3.6 3区 工程技术 Q2 ENGINEERING, CHEMICAL Journal of Loss Prevention in The Process Industries Pub Date : 2024-05-24 DOI:10.1016/j.jlp.2024.105354
Raphael R.C. Santos, Sávio S.V. Vianna
{"title":"计算重力流瞬时体积的数学模型:以意外释放的混合机制和体积增长为重点的实验分析","authors":"Raphael R.C. Santos,&nbsp;Sávio S.V. Vianna","doi":"10.1016/j.jlp.2024.105354","DOIUrl":null,"url":null,"abstract":"<div><p>We present experiments of two dimensional high-Reynolds (<span><math><mrow><mi>R</mi><mi>e</mi><mo>&gt;</mo><mn>2400</mn></mrow></math></span>) turbulent gravity current advancing down on slope <span><math><mrow><mo>(</mo><mi>θ</mi><mo>=</mo><mn>5</mn><mo>°</mo><mo>)</mo></mrow></math></span> generated by continuous buoyancy flux. The current research is focused on understanding the flow mixing mechanism and consequently the rate of volume growth for the development of mathematical model to calculate the volume of the current. The gravity currents were obtained pumping saline solution continuously into a channel filled with fresh water. Images of the flow were taken with a ratio of 4 frames per second (fps). The gravity current buoyancy distribution was obtained by using light attenuation technique to calculate the cross-channel average of the density. It was found that the proportional parameter <span><math><mi>λ</mi></math></span> in <span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>=</mo><mi>λ</mi><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub><msubsup><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></mrow></math></span> is <span><math><mrow><mi>λ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>23</mn><mo>/</mo><mi>F</mi><msubsup><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>/</mo><mn>12</mn></mrow></msubsup></mrow></math></span>. The head reaches a dynamic equilibrium for <span><math><mrow><mi>F</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>≈</mo><mn>0</mn><mo>.</mo><mn>95</mn></mrow></math></span>, where <span><math><mrow><mi>F</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>=</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>/</mo><msqrt><mrow><msubsup><mrow><mi>g</mi></mrow><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msubsup><msub><mrow><mi>h</mi></mrow><mrow><mi>F</mi></mrow></msub></mrow></msqrt></mrow></math></span>. Three mixing zones were observed; near the source, tail and head. The ambient fluid volume fluxes entraining the current into this three zones were modelled in terms of entrainment coefficients <span><math><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span>, respectively. A model of the rate of growth of the volume of the current was developed, it is written as <span><math><mrow><mi>d</mi><mi>V</mi><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>3</mn></mrow></msup><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. One of the simplifications implies that the volume growth rate is constant. Good agreement with experimental data is observed.</p></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mathematical model for calculating the transient volume of gravity currents: An experimental analysis focused on mixing mechanisms and volume growth for accidental releases\",\"authors\":\"Raphael R.C. Santos,&nbsp;Sávio S.V. Vianna\",\"doi\":\"10.1016/j.jlp.2024.105354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present experiments of two dimensional high-Reynolds (<span><math><mrow><mi>R</mi><mi>e</mi><mo>&gt;</mo><mn>2400</mn></mrow></math></span>) turbulent gravity current advancing down on slope <span><math><mrow><mo>(</mo><mi>θ</mi><mo>=</mo><mn>5</mn><mo>°</mo><mo>)</mo></mrow></math></span> generated by continuous buoyancy flux. The current research is focused on understanding the flow mixing mechanism and consequently the rate of volume growth for the development of mathematical model to calculate the volume of the current. The gravity currents were obtained pumping saline solution continuously into a channel filled with fresh water. Images of the flow were taken with a ratio of 4 frames per second (fps). The gravity current buoyancy distribution was obtained by using light attenuation technique to calculate the cross-channel average of the density. It was found that the proportional parameter <span><math><mi>λ</mi></math></span> in <span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>=</mo><mi>λ</mi><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub><msubsup><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></mrow></math></span> is <span><math><mrow><mi>λ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>23</mn><mo>/</mo><mi>F</mi><msubsup><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>/</mo><mn>12</mn></mrow></msubsup></mrow></math></span>. The head reaches a dynamic equilibrium for <span><math><mrow><mi>F</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>≈</mo><mn>0</mn><mo>.</mo><mn>95</mn></mrow></math></span>, where <span><math><mrow><mi>F</mi><msub><mrow><mi>r</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>=</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>/</mo><msqrt><mrow><msubsup><mrow><mi>g</mi></mrow><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msubsup><msub><mrow><mi>h</mi></mrow><mrow><mi>F</mi></mrow></msub></mrow></msqrt></mrow></math></span>. Three mixing zones were observed; near the source, tail and head. The ambient fluid volume fluxes entraining the current into this three zones were modelled in terms of entrainment coefficients <span><math><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span>, respectively. A model of the rate of growth of the volume of the current was developed, it is written as <span><math><mrow><mi>d</mi><mi>V</mi><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>3</mn></mrow></msup><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. One of the simplifications implies that the volume growth rate is constant. Good agreement with experimental data is observed.</p></div>\",\"PeriodicalId\":16291,\"journal\":{\"name\":\"Journal of Loss Prevention in The Process Industries\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Loss Prevention in The Process Industries\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950423024001128\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423024001128","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了由连续浮力通量产生的二维高雷诺(Re>2400)湍流重力流在斜坡(θ=5°)上向下推进的实验。目前的研究重点是了解水流的混合机制以及随之而来的体积增长率,从而建立计算水流体积的数学模型。重力流是通过将盐溶液连续泵入充满淡水的通道中获得的。水流图像以每秒 4 帧(fps)的速度拍摄。重力流浮力分布是利用光衰减技术计算出的跨通道平均密度。结果发现,UF=λ(Q0g0′)1/3 中的比例参数 λ 为 λ=1.23/Fr01/12。当 FrF≈0.95 时,水头达到动态平衡,即 FrH=UF/gF′hF。观察到三个混合区:源附近、尾部和头部。分别用夹带系数 ɛj、ɛT 和 ɛH 来模拟将水流夹带到这三个区域的环境流体体积通量。我们建立了一个水流体积增长率模型,即 dV/dt=Q0(1+ɛJ)/(1-λ3ɛH) 。其中一项简化意味着体积增长率是恒定的。结果与实验数据吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A mathematical model for calculating the transient volume of gravity currents: An experimental analysis focused on mixing mechanisms and volume growth for accidental releases

We present experiments of two dimensional high-Reynolds (Re>2400) turbulent gravity current advancing down on slope (θ=5°) generated by continuous buoyancy flux. The current research is focused on understanding the flow mixing mechanism and consequently the rate of volume growth for the development of mathematical model to calculate the volume of the current. The gravity currents were obtained pumping saline solution continuously into a channel filled with fresh water. Images of the flow were taken with a ratio of 4 frames per second (fps). The gravity current buoyancy distribution was obtained by using light attenuation technique to calculate the cross-channel average of the density. It was found that the proportional parameter λ in UF=λ(Q0g0)1/3 is λ=1.23/Fr01/12. The head reaches a dynamic equilibrium for FrF0.95, where FrH=UF/gFhF. Three mixing zones were observed; near the source, tail and head. The ambient fluid volume fluxes entraining the current into this three zones were modelled in terms of entrainment coefficients ɛj, ɛT, ɛH, respectively. A model of the rate of growth of the volume of the current was developed, it is written as dV/dt=Q0(1+ɛJ)/(1λ3ɛH). One of the simplifications implies that the volume growth rate is constant. Good agreement with experimental data is observed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
14.30%
发文量
226
审稿时长
52 days
期刊介绍: The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.
期刊最新文献
Research on the diffusion and control of unsafe behaviors among chemical industry park enterprises based on the SEIR evolutionary game model Experimental study on hydrogen pipeline leakage: Negative pressure wave characteristics and inline detection method A dynamic system reliability analysis model on safety instrumented systems Effect of ambient pressure on the fire characteristics of lithium-ion battery energy storage container Incident investigation of hydrogen explosion and fire in a residue desulfurization process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1