Zhanchi Liu , Hongyu Ma , Sheng Chen , Wenzheng Jiang , Dejun Dai , Yuhuan Xue , Fangli Qiao
{"title":"波浪陡度对海雾生成影响的实验室研究","authors":"Zhanchi Liu , Hongyu Ma , Sheng Chen , Wenzheng Jiang , Dejun Dai , Yuhuan Xue , Fangli Qiao","doi":"10.1016/j.dynatmoce.2024.101466","DOIUrl":null,"url":null,"abstract":"<div><p>Sea spray generation is vital for air-sea interactions, however, it has been showing large differences of four orders of magnitude under the same wind speed. It is well known that wind speed can affect sea spray generation, and other physical processes should also be further considered. Surface wave states are widely believed to have significant impacts on sea spray generation, however, they have not yet been specifically and quantitatively verified. This study investigated the effects of surface waves on sea spray generation through a series of controlled laboratory experiments in a large wind-wave tank. Background mechanical waves with different wave heights and periods at a constant high wind speed (<em>U</em><sub><em>10</em></sub> = 22 m/s) were synchronically introduced to generate sprays, and sprays with radii ranging from 1.5 to 25 μm were recorded by an optical particle counter. The experimental results indicated that different wave steepness has dramatic effects on sea spray generation function (SSGF) under the same wind speed, which can be close to two orders of magnitude. Then, a power law as a function of wind and wave steepness <span><math><mrow><msubsup><mrow><mi>u</mi></mrow><mrow><mo>*</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msubsup><mi>S</mi><msubsup><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mspace></mspace></mrow></math></span>was proposed to describe the sea spray production rate (F).</p></div><div><h3>Plain Language Summary</h3><p>Sea sprays generated by wave breaking exist at the air-sea interface and have significant impacts on the air-sea mass, momentum and heat exchanges, especially under extreme ocean conditions. In the past 30 years, sea spray generation function (SSGF) controlled by wind speed has been widely adopted, although surface wave effects on sea spray generation have received high attention. The impacts of surface waves have rarely been considered due to sea spray observation difficulties at high sea states, and previous SSGFs have shown large differences of four orders of magnitude. Focusing on this tremendous difference, we conducted a series of wind-wave tank experiments under different wave conditions at a high wind speed to investigate the impact of surface waves on the SSGF. Our results showed that wave steepness is an important factor modulating the SSGF, which provides quantitative evidence for better understandings on sea spray generation and hence their influences on air-sea momentum and heat fluxes.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377026524000344/pdfft?md5=fef6bef355030ee74557bb04121760eb&pid=1-s2.0-S0377026524000344-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A laboratory study of wave steepness effects on sea spray generation\",\"authors\":\"Zhanchi Liu , Hongyu Ma , Sheng Chen , Wenzheng Jiang , Dejun Dai , Yuhuan Xue , Fangli Qiao\",\"doi\":\"10.1016/j.dynatmoce.2024.101466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sea spray generation is vital for air-sea interactions, however, it has been showing large differences of four orders of magnitude under the same wind speed. It is well known that wind speed can affect sea spray generation, and other physical processes should also be further considered. Surface wave states are widely believed to have significant impacts on sea spray generation, however, they have not yet been specifically and quantitatively verified. This study investigated the effects of surface waves on sea spray generation through a series of controlled laboratory experiments in a large wind-wave tank. Background mechanical waves with different wave heights and periods at a constant high wind speed (<em>U</em><sub><em>10</em></sub> = 22 m/s) were synchronically introduced to generate sprays, and sprays with radii ranging from 1.5 to 25 μm were recorded by an optical particle counter. The experimental results indicated that different wave steepness has dramatic effects on sea spray generation function (SSGF) under the same wind speed, which can be close to two orders of magnitude. Then, a power law as a function of wind and wave steepness <span><math><mrow><msubsup><mrow><mi>u</mi></mrow><mrow><mo>*</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msubsup><mi>S</mi><msubsup><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup><mspace></mspace></mrow></math></span>was proposed to describe the sea spray production rate (F).</p></div><div><h3>Plain Language Summary</h3><p>Sea sprays generated by wave breaking exist at the air-sea interface and have significant impacts on the air-sea mass, momentum and heat exchanges, especially under extreme ocean conditions. In the past 30 years, sea spray generation function (SSGF) controlled by wind speed has been widely adopted, although surface wave effects on sea spray generation have received high attention. The impacts of surface waves have rarely been considered due to sea spray observation difficulties at high sea states, and previous SSGFs have shown large differences of four orders of magnitude. Focusing on this tremendous difference, we conducted a series of wind-wave tank experiments under different wave conditions at a high wind speed to investigate the impact of surface waves on the SSGF. Our results showed that wave steepness is an important factor modulating the SSGF, which provides quantitative evidence for better understandings on sea spray generation and hence their influences on air-sea momentum and heat fluxes.</p></div>\",\"PeriodicalId\":50563,\"journal\":{\"name\":\"Dynamics of Atmospheres and Oceans\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0377026524000344/pdfft?md5=fef6bef355030ee74557bb04121760eb&pid=1-s2.0-S0377026524000344-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Atmospheres and Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377026524000344\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026524000344","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A laboratory study of wave steepness effects on sea spray generation
Sea spray generation is vital for air-sea interactions, however, it has been showing large differences of four orders of magnitude under the same wind speed. It is well known that wind speed can affect sea spray generation, and other physical processes should also be further considered. Surface wave states are widely believed to have significant impacts on sea spray generation, however, they have not yet been specifically and quantitatively verified. This study investigated the effects of surface waves on sea spray generation through a series of controlled laboratory experiments in a large wind-wave tank. Background mechanical waves with different wave heights and periods at a constant high wind speed (U10 = 22 m/s) were synchronically introduced to generate sprays, and sprays with radii ranging from 1.5 to 25 μm were recorded by an optical particle counter. The experimental results indicated that different wave steepness has dramatic effects on sea spray generation function (SSGF) under the same wind speed, which can be close to two orders of magnitude. Then, a power law as a function of wind and wave steepness was proposed to describe the sea spray production rate (F).
Plain Language Summary
Sea sprays generated by wave breaking exist at the air-sea interface and have significant impacts on the air-sea mass, momentum and heat exchanges, especially under extreme ocean conditions. In the past 30 years, sea spray generation function (SSGF) controlled by wind speed has been widely adopted, although surface wave effects on sea spray generation have received high attention. The impacts of surface waves have rarely been considered due to sea spray observation difficulties at high sea states, and previous SSGFs have shown large differences of four orders of magnitude. Focusing on this tremendous difference, we conducted a series of wind-wave tank experiments under different wave conditions at a high wind speed to investigate the impact of surface waves on the SSGF. Our results showed that wave steepness is an important factor modulating the SSGF, which provides quantitative evidence for better understandings on sea spray generation and hence their influences on air-sea momentum and heat fluxes.
期刊介绍:
Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate.
Authors are invited to submit articles, short contributions or scholarly reviews in the following areas:
•Dynamic meteorology
•Physical oceanography
•Geophysical fluid dynamics
•Climate variability and climate change
•Atmosphere-ocean-biosphere-cryosphere interactions
•Prediction and predictability
•Scale interactions
Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.