InstaCropNet:基于 Unet 的高效架构,用于农业应用中的作物行精确检测

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY Artificial Intelligence in Agriculture Pub Date : 2024-06-01 DOI:10.1016/j.aiia.2024.05.002
Zhiming Guo , Yuhang Geng , Chuan Wang , Yi Xue , Deng Sun , Zhaoxia Lou , Tianbao Chen , Tianyu Geng , Longzhe Quan
{"title":"InstaCropNet:基于 Unet 的高效架构,用于农业应用中的作物行精确检测","authors":"Zhiming Guo ,&nbsp;Yuhang Geng ,&nbsp;Chuan Wang ,&nbsp;Yi Xue ,&nbsp;Deng Sun ,&nbsp;Zhaoxia Lou ,&nbsp;Tianbao Chen ,&nbsp;Tianyu Geng ,&nbsp;Longzhe Quan","doi":"10.1016/j.aiia.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Autonomous navigation in farmlands is one of the key technologies for achieving autonomous management in maize fields. Among various navigation techniques, visual navigation using widely available RGB images is a cost-effective solution. However, current mainstream methods for maize crop row detection often rely on highly specialized, manually devised heuristic rules, limiting the scalability of these methods. To simplify the solution and enhance its universality, we propose an innovative crop row annotation strategy. This strategy, by simulating the strip-like structure of the crop row's central area, effectively avoids interference from lateral growth of crop leaves. Based on this, we developed a deep learning network with a dual-branch architecture, InstaCropNet, which achieves end-to-end segmentation of crop row instances. Subsequently, through the row anchor segmentation technique, we accurately locate the positions of different crop row instances and perform line fitting. Experimental results demonstrate that our method has an average angular deviation of no more than 2°, and the accuracy of crop row detection reaches 96.5%.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"12 ","pages":"Pages 85-96"},"PeriodicalIF":8.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721724000175/pdfft?md5=4c6e92e045769fe5ef6e32adc1438b8b&pid=1-s2.0-S2589721724000175-main.pdf","citationCount":"0","resultStr":"{\"title\":\"InstaCropNet: An efficient Unet-Based architecture for precise crop row detection in agricultural applications\",\"authors\":\"Zhiming Guo ,&nbsp;Yuhang Geng ,&nbsp;Chuan Wang ,&nbsp;Yi Xue ,&nbsp;Deng Sun ,&nbsp;Zhaoxia Lou ,&nbsp;Tianbao Chen ,&nbsp;Tianyu Geng ,&nbsp;Longzhe Quan\",\"doi\":\"10.1016/j.aiia.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Autonomous navigation in farmlands is one of the key technologies for achieving autonomous management in maize fields. Among various navigation techniques, visual navigation using widely available RGB images is a cost-effective solution. However, current mainstream methods for maize crop row detection often rely on highly specialized, manually devised heuristic rules, limiting the scalability of these methods. To simplify the solution and enhance its universality, we propose an innovative crop row annotation strategy. This strategy, by simulating the strip-like structure of the crop row's central area, effectively avoids interference from lateral growth of crop leaves. Based on this, we developed a deep learning network with a dual-branch architecture, InstaCropNet, which achieves end-to-end segmentation of crop row instances. Subsequently, through the row anchor segmentation technique, we accurately locate the positions of different crop row instances and perform line fitting. Experimental results demonstrate that our method has an average angular deviation of no more than 2°, and the accuracy of crop row detection reaches 96.5%.</p></div>\",\"PeriodicalId\":52814,\"journal\":{\"name\":\"Artificial Intelligence in Agriculture\",\"volume\":\"12 \",\"pages\":\"Pages 85-96\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589721724000175/pdfft?md5=4c6e92e045769fe5ef6e32adc1438b8b&pid=1-s2.0-S2589721724000175-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Agriculture\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589721724000175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721724000175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

农田自主导航是实现玉米田自主管理的关键技术之一。在各种导航技术中,利用广泛可用的 RGB 图像进行视觉导航是一种经济有效的解决方案。然而,目前玉米作物行检测的主流方法往往依赖于高度专业化、人工设计的启发式规则,限制了这些方法的可扩展性。为了简化解决方案并提高其通用性,我们提出了一种创新的作物行注释策略。该策略通过模拟作物行中心区域的条状结构,有效避免了作物叶片横向生长的干扰。在此基础上,我们开发了一种具有双分支架构的深度学习网络--InstaCropNet,实现了对作物行实例的端到端分割。随后,通过行锚分割技术,我们准确定位了不同作物行实例的位置,并进行了线拟合。实验结果表明,我们的方法平均角度偏差不超过 2°,作物行检测准确率达到 96.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
InstaCropNet: An efficient Unet-Based architecture for precise crop row detection in agricultural applications

Autonomous navigation in farmlands is one of the key technologies for achieving autonomous management in maize fields. Among various navigation techniques, visual navigation using widely available RGB images is a cost-effective solution. However, current mainstream methods for maize crop row detection often rely on highly specialized, manually devised heuristic rules, limiting the scalability of these methods. To simplify the solution and enhance its universality, we propose an innovative crop row annotation strategy. This strategy, by simulating the strip-like structure of the crop row's central area, effectively avoids interference from lateral growth of crop leaves. Based on this, we developed a deep learning network with a dual-branch architecture, InstaCropNet, which achieves end-to-end segmentation of crop row instances. Subsequently, through the row anchor segmentation technique, we accurately locate the positions of different crop row instances and perform line fitting. Experimental results demonstrate that our method has an average angular deviation of no more than 2°, and the accuracy of crop row detection reaches 96.5%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Enhancing crop yield prediction in Senegal using advanced machine learning techniques and synthetic data Neural network architecture search enabled wide-deep learning (NAS-WD) for spatially heterogenous property awared chicken woody breast classification and hardness regression Utility-based regression and meta-learning techniques for modeling actual ET: Comparison to (METRIC-EEFLUX) model Detectability of multi-dimensional movement and behaviour in cattle using sensor data and machine learning algorithms: Study on a Charolais bull Estimating TYLCV resistance level using RGBD sensors in production greenhouse conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1