冶金失效分析:观察 SS304 不锈钢管泄漏的案例研究

IF 1.3 4区 工程技术 Q3 CHEMISTRY, ORGANIC Petroleum Chemistry Pub Date : 2024-05-23 DOI:10.1134/s096554412402004x
Hassan Mansour Raheem, Ibraheem Altayer, Hayder Shareef Mohamed, Mohammed H. Al-maamori
{"title":"冶金失效分析:观察 SS304 不锈钢管泄漏的案例研究","authors":"Hassan Mansour Raheem, Ibraheem Altayer, Hayder Shareef Mohamed, Mohammed H. Al-maamori","doi":"10.1134/s096554412402004x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this study, metallurgical failure analysis of leak observed in SS304 pipe of 355.6 mm out side diameter and 4.78 mm wall thickness is invistigated. The pipe was hydrostatic pressure tested, and the leakage was observed on the pipe after priod of time. Visual test, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS), and energy dispersive X-ray spectroscopy (EDS) were carried out on the samples. Heat tint and griding marks were observed during visual inspection. In addition, scanning electron microscopy reveales many pinholes, tunnel-types in the leaked area. Energy-dispersive X-ray spectroscopy also shows that a multifactorial corrosion process due to stagnant water conditions, bacterial activity, corrosive elements contribte to the leak in the pipe. The results show that the leak damage essentially due to stagnancy of water—improper dry-out of the pipe after hydro test leading to chloride pitting attack and eventually causing leakage. The decomposition of the passive oxide layer due to the high concentration of chlorine and accumulation of microbial byproducts played an important role in examining the SS304 pipe. Preventive measures such as proper inspection, proper welding practices, sanitation, disinfection, and water management are important for corrosion prevention.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"121 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metallurgical Failure Analysis: A Case Study of Observing a Leak in a Stainless Steel SS304 Pipe\",\"authors\":\"Hassan Mansour Raheem, Ibraheem Altayer, Hayder Shareef Mohamed, Mohammed H. Al-maamori\",\"doi\":\"10.1134/s096554412402004x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this study, metallurgical failure analysis of leak observed in SS304 pipe of 355.6 mm out side diameter and 4.78 mm wall thickness is invistigated. The pipe was hydrostatic pressure tested, and the leakage was observed on the pipe after priod of time. Visual test, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS), and energy dispersive X-ray spectroscopy (EDS) were carried out on the samples. Heat tint and griding marks were observed during visual inspection. In addition, scanning electron microscopy reveales many pinholes, tunnel-types in the leaked area. Energy-dispersive X-ray spectroscopy also shows that a multifactorial corrosion process due to stagnant water conditions, bacterial activity, corrosive elements contribte to the leak in the pipe. The results show that the leak damage essentially due to stagnancy of water—improper dry-out of the pipe after hydro test leading to chloride pitting attack and eventually causing leakage. The decomposition of the passive oxide layer due to the high concentration of chlorine and accumulation of microbial byproducts played an important role in examining the SS304 pipe. Preventive measures such as proper inspection, proper welding practices, sanitation, disinfection, and water management are important for corrosion prevention.</p>\",\"PeriodicalId\":725,\"journal\":{\"name\":\"Petroleum Chemistry\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1134/s096554412402004x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s096554412402004x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本研究对外径 355.6 毫米、壁厚 4.78 毫米的 SS304 管材中观察到的泄漏进行了冶金失效分析。对管道进行了静水压力测试,并在一段时间后观察到管道出现泄漏。对样品进行了目测、扫描电子显微镜(SEM)、能量色散 X 射线光谱(EDS)和能量色散 X 射线光谱(EDS)分析。在目测过程中观察到了热色调和栅格痕迹。此外,扫描电子显微镜还在泄漏区域发现了许多针孔和隧道类型。能量色散 X 射线光谱分析也显示,积水条件、细菌活动、腐蚀性元素等多因素腐蚀过程导致了管道泄漏。结果表明,泄漏破坏主要是由于积水--水压试验后管道干燥不当导致氯化物点蚀,最终造成泄漏。高浓度氯导致的被动氧化层分解和微生物副产物的积累在 SS304 管道的检测中发挥了重要作用。正确的检查、正确的焊接方法、卫生、消毒和水管理等预防措施对于防止腐蚀非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metallurgical Failure Analysis: A Case Study of Observing a Leak in a Stainless Steel SS304 Pipe

Abstract

In this study, metallurgical failure analysis of leak observed in SS304 pipe of 355.6 mm out side diameter and 4.78 mm wall thickness is invistigated. The pipe was hydrostatic pressure tested, and the leakage was observed on the pipe after priod of time. Visual test, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS), and energy dispersive X-ray spectroscopy (EDS) were carried out on the samples. Heat tint and griding marks were observed during visual inspection. In addition, scanning electron microscopy reveales many pinholes, tunnel-types in the leaked area. Energy-dispersive X-ray spectroscopy also shows that a multifactorial corrosion process due to stagnant water conditions, bacterial activity, corrosive elements contribte to the leak in the pipe. The results show that the leak damage essentially due to stagnancy of water—improper dry-out of the pipe after hydro test leading to chloride pitting attack and eventually causing leakage. The decomposition of the passive oxide layer due to the high concentration of chlorine and accumulation of microbial byproducts played an important role in examining the SS304 pipe. Preventive measures such as proper inspection, proper welding practices, sanitation, disinfection, and water management are important for corrosion prevention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum Chemistry
Petroleum Chemistry 工程技术-工程:化工
CiteScore
2.50
自引率
21.40%
发文量
102
审稿时长
6-12 weeks
期刊介绍: Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas. Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.
期刊最新文献
Estimating the Petrophysical Properties Cutoff Values for Net Pay Determination: A Case Study of Khasib Formation, Southern Iraq Evaluation of Petrophysical Properties of Mishrif, Rumiala, Ahmadi, and Mauddud Formations in Nasiriya Oil Field—Middle of Iraq Design of Hybrid Porous Materials for Obtaining and Storage of Gas Hydrates Synthesis and Properties of a Low-Viscosity and Acid-Resistant Retarding Agent Fracture Pressure Prediction in Carbonate Reservoir Using Artificial Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1