Jenny Schubert, Marc C. Steinbach, Christian Hente, David Märtins, Daniel Schuster
{"title":"利用不精确牛顿算法加速气动弹性 UVLM 仿真","authors":"Jenny Schubert, Marc C. Steinbach, Christian Hente, David Märtins, Daniel Schuster","doi":"10.1007/s00466-024-02484-2","DOIUrl":null,"url":null,"abstract":"<p>We consider the aeroelastic simulation of flexible mechanical structures submerged in subsonic fluid flows at low Mach numbers. The nonlinear kinematics of flexible bodies are described in the total Lagrangian formulation and discretized by finite elements. The aerodynamic loads are computed using the unsteady vortex-lattice method wherein a free wake is tracked over time. Each implicit time step in the dynamic simulation then requires solving a nonlinear equation system in the structural variables with additional aerodynamic load terms. Our focus here is on the efficient numerical solution of this system by accelerating the Newton algorithm. The particular structure of the aeroelastic nonlinear system suggests the structural derivative as an approximation to the full derivative in the linear Newton system. We investigate and compare two promising algorithms based on this approximation, a quasi-Newton type algorithm and a novel inexact Newton algorithm. Numerical experiments are performed on a flexible plate and on a wind turbine. Our computational results show that the approximation can indeed accelerate the Newton algorithm substantially. Surprisingly, the theoretically preferable inexact Newton algorithm is much slower than the quasi-Newton algorithm, which motivates further research to speed up derivative evaluations.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"30 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating aeroelastic UVLM simulations by inexact Newton algorithms\",\"authors\":\"Jenny Schubert, Marc C. Steinbach, Christian Hente, David Märtins, Daniel Schuster\",\"doi\":\"10.1007/s00466-024-02484-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the aeroelastic simulation of flexible mechanical structures submerged in subsonic fluid flows at low Mach numbers. The nonlinear kinematics of flexible bodies are described in the total Lagrangian formulation and discretized by finite elements. The aerodynamic loads are computed using the unsteady vortex-lattice method wherein a free wake is tracked over time. Each implicit time step in the dynamic simulation then requires solving a nonlinear equation system in the structural variables with additional aerodynamic load terms. Our focus here is on the efficient numerical solution of this system by accelerating the Newton algorithm. The particular structure of the aeroelastic nonlinear system suggests the structural derivative as an approximation to the full derivative in the linear Newton system. We investigate and compare two promising algorithms based on this approximation, a quasi-Newton type algorithm and a novel inexact Newton algorithm. Numerical experiments are performed on a flexible plate and on a wind turbine. Our computational results show that the approximation can indeed accelerate the Newton algorithm substantially. Surprisingly, the theoretically preferable inexact Newton algorithm is much slower than the quasi-Newton algorithm, which motivates further research to speed up derivative evaluations.</p>\",\"PeriodicalId\":55248,\"journal\":{\"name\":\"Computational Mechanics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00466-024-02484-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02484-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Accelerating aeroelastic UVLM simulations by inexact Newton algorithms
We consider the aeroelastic simulation of flexible mechanical structures submerged in subsonic fluid flows at low Mach numbers. The nonlinear kinematics of flexible bodies are described in the total Lagrangian formulation and discretized by finite elements. The aerodynamic loads are computed using the unsteady vortex-lattice method wherein a free wake is tracked over time. Each implicit time step in the dynamic simulation then requires solving a nonlinear equation system in the structural variables with additional aerodynamic load terms. Our focus here is on the efficient numerical solution of this system by accelerating the Newton algorithm. The particular structure of the aeroelastic nonlinear system suggests the structural derivative as an approximation to the full derivative in the linear Newton system. We investigate and compare two promising algorithms based on this approximation, a quasi-Newton type algorithm and a novel inexact Newton algorithm. Numerical experiments are performed on a flexible plate and on a wind turbine. Our computational results show that the approximation can indeed accelerate the Newton algorithm substantially. Surprisingly, the theoretically preferable inexact Newton algorithm is much slower than the quasi-Newton algorithm, which motivates further research to speed up derivative evaluations.
期刊介绍:
The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies.
Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged.
Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.