{"title":"利用指数加权和经验铰链损失进行高维稀疏分类","authors":"The Tien Mai","doi":"10.1111/stan.12342","DOIUrl":null,"url":null,"abstract":"In this study, we address the problem of high‐dimensional binary classification. Our proposed solution involves employing an aggregation technique founded on exponential weights and empirical hinge loss. Through the employment of a suitable sparsity‐inducing prior distribution, we demonstrate that our method yields favorable theoretical results on prediction error. The efficiency of our procedure is achieved through the utilization of Langevin Monte Carlo, a gradient‐based sampling approach. To illustrate the effectiveness of our approach, we conduct comparisons with the logistic Lasso on simulated data and a real dataset. Our method frequently demonstrates superior performance compared to the logistic Lasso.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"50 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High‐dimensional sparse classification using exponential weighting with empirical hinge loss\",\"authors\":\"The Tien Mai\",\"doi\":\"10.1111/stan.12342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we address the problem of high‐dimensional binary classification. Our proposed solution involves employing an aggregation technique founded on exponential weights and empirical hinge loss. Through the employment of a suitable sparsity‐inducing prior distribution, we demonstrate that our method yields favorable theoretical results on prediction error. The efficiency of our procedure is achieved through the utilization of Langevin Monte Carlo, a gradient‐based sampling approach. To illustrate the effectiveness of our approach, we conduct comparisons with the logistic Lasso on simulated data and a real dataset. Our method frequently demonstrates superior performance compared to the logistic Lasso.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12342\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12342","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
在这项研究中,我们解决了高维二元分类的问题。我们提出的解决方案包括采用一种基于指数权重和经验铰链损失的聚合技术。通过使用合适的稀疏性诱导先验分布,我们证明了我们的方法在预测误差方面产生了良好的理论结果。通过使用基于梯度的抽样方法 Langevin Monte Carlo,我们实现了程序的高效性。为了说明我们方法的有效性,我们在模拟数据和真实数据集上与 logistic Lasso 进行了比较。与 logistic Lasso 相比,我们的方法经常表现出更优越的性能。
High‐dimensional sparse classification using exponential weighting with empirical hinge loss
In this study, we address the problem of high‐dimensional binary classification. Our proposed solution involves employing an aggregation technique founded on exponential weights and empirical hinge loss. Through the employment of a suitable sparsity‐inducing prior distribution, we demonstrate that our method yields favorable theoretical results on prediction error. The efficiency of our procedure is achieved through the utilization of Langevin Monte Carlo, a gradient‐based sampling approach. To illustrate the effectiveness of our approach, we conduct comparisons with the logistic Lasso on simulated data and a real dataset. Our method frequently demonstrates superior performance compared to the logistic Lasso.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.