Runjuan Du, Yuhang Chen, Zhiming Ding, Chuanting Fan, Gang Wang, Jie Zhang and Zhiyong Tang
{"title":"用于偶氮产物异相光催化合成的浆料泰勒流微反应器的规模扩大","authors":"Runjuan Du, Yuhang Chen, Zhiming Ding, Chuanting Fan, Gang Wang, Jie Zhang and Zhiyong Tang","doi":"10.1039/D3RE00690E","DOIUrl":null,"url":null,"abstract":"<p >Scaling-up of continuous-flow photocatalytic reactions is of great importance for widespread implementation in the industry. Despite several successful demonstrations for the homogeneous photochemistry, much less progress has been made on the heterogeneous photochemistry. Herein, we report the scale-up of slurry Taylor flow photosynthesis of azo-compounds (azoxybenzene and azobenzene) from nitrobenzene. Sizing-up strategy was applied to boost the throughput of the reactor, in combination with a high-power LED light source to provide effective irradiation. The effects of various operating parameters were investigated to achieve the best synergy of multi-phase flow, interphase transfer and photon transfer process. The scaled-up slurry Taylor flow process was finally validated on a 50 gram scale for azo-compounds, which was 22 times higher than the recently reported value. Furthermore, a correlation was proposed to predict the overall photocatalytic productivity during the scale-up. This work demonstrates a cost-effective and efficient scale-up methodology for the heterogeneous photosynthesis of azo-compounds.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 8","pages":" 2249-2261"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale-up of slurry Taylor flow microreactor for heterogeneous photocatalytic synthesis of azo-products†\",\"authors\":\"Runjuan Du, Yuhang Chen, Zhiming Ding, Chuanting Fan, Gang Wang, Jie Zhang and Zhiyong Tang\",\"doi\":\"10.1039/D3RE00690E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Scaling-up of continuous-flow photocatalytic reactions is of great importance for widespread implementation in the industry. Despite several successful demonstrations for the homogeneous photochemistry, much less progress has been made on the heterogeneous photochemistry. Herein, we report the scale-up of slurry Taylor flow photosynthesis of azo-compounds (azoxybenzene and azobenzene) from nitrobenzene. Sizing-up strategy was applied to boost the throughput of the reactor, in combination with a high-power LED light source to provide effective irradiation. The effects of various operating parameters were investigated to achieve the best synergy of multi-phase flow, interphase transfer and photon transfer process. The scaled-up slurry Taylor flow process was finally validated on a 50 gram scale for azo-compounds, which was 22 times higher than the recently reported value. Furthermore, a correlation was proposed to predict the overall photocatalytic productivity during the scale-up. This work demonstrates a cost-effective and efficient scale-up methodology for the heterogeneous photosynthesis of azo-compounds.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":\" 8\",\"pages\":\" 2249-2261\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/re/d3re00690e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d3re00690e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
扩大连续流光催化反应的规模对于在工业中广泛应用具有重要意义。尽管在均相光化学方面取得了一些成功的示范,但在异相光化学方面的进展却少得多。在此,我们报告了以硝基苯为原料进行偶氮化合物(偶氮苯和偶氮苯)的浆料泰勒流光合作用的放大过程。我们采用了放大策略来提高反应器的吞吐量,并结合大功率 LED 光源来提供有效的辐照。研究了各种操作参数的影响,以实现多相流、相间转移和光子转移过程的最佳协同效应。最终在 50 克的规模上验证了扩大的浆料泰勒流工艺对偶氮化合物的处理效果,比最近报道的值高出 22 倍。此外,还提出了一种相关方法,用于预测放大过程中的整体光催化生产率。这项研究为偶氮化合物的异相光合作用展示了一种经济高效的放大方法。
Scale-up of slurry Taylor flow microreactor for heterogeneous photocatalytic synthesis of azo-products†
Scaling-up of continuous-flow photocatalytic reactions is of great importance for widespread implementation in the industry. Despite several successful demonstrations for the homogeneous photochemistry, much less progress has been made on the heterogeneous photochemistry. Herein, we report the scale-up of slurry Taylor flow photosynthesis of azo-compounds (azoxybenzene and azobenzene) from nitrobenzene. Sizing-up strategy was applied to boost the throughput of the reactor, in combination with a high-power LED light source to provide effective irradiation. The effects of various operating parameters were investigated to achieve the best synergy of multi-phase flow, interphase transfer and photon transfer process. The scaled-up slurry Taylor flow process was finally validated on a 50 gram scale for azo-compounds, which was 22 times higher than the recently reported value. Furthermore, a correlation was proposed to predict the overall photocatalytic productivity during the scale-up. This work demonstrates a cost-effective and efficient scale-up methodology for the heterogeneous photosynthesis of azo-compounds.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.