{"title":"尿苷磷酸酶-1通过糖酵解途径促进人表皮角质细胞的细胞活力和细胞周期进展","authors":"Xiaoqing Xiao, Tianwen Qiu, Qiong Cheng, Wenyu Wang, Chunyan Fan, Fuguo Zuo","doi":"10.1111/1440-1681.13874","DOIUrl":null,"url":null,"abstract":"<p>Glycolysis is vital for the excessive proliferation of keratinocytes in psoriasis, and uridine phosphorylase-1 (UPP1) functions as an enhancer of cancer cell proliferation. However, little is known about whether UPP1 promotes keratinocyte proliferation and accelerates psoriasis development. This study revealed that UPP1 facilitates cell viability and cell-cycle progression in human epidermal keratinocytes (HEKs) by modulating the glycolytic pathway. Bioinformatics analysis of UPP1 gene expression and its correlation with the Reactome revealed that UPP1 mRNA expression, cell-cycle progression, the interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway and glycolysis were positively associated with psoriasis. Cell proliferation, the cell cycle and glycolysis were evaluated after UPP1 was silenced or overexpressed. The results showed that UPP1 overexpression increased cell proliferation, cell-cycle progression and glycolysis, which was contrary to the effects of UPP1 silencing. However, the STAT3 inhibitor diminished UPP1 expression because STAT3 can bind to the UPP1 promoter. In conclusion, UPP1 was significantly activated by the IL-6/STAT3 pathway and could modulate glycolysis to regulate cell proliferation and cell-cycle progression in keratinocytes during the development of psoriasis.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"51 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uridine phosphorylase-1 promotes cell viability and cell-cycle progression in human epidermal keratinocytes via the glycolytic pathway\",\"authors\":\"Xiaoqing Xiao, Tianwen Qiu, Qiong Cheng, Wenyu Wang, Chunyan Fan, Fuguo Zuo\",\"doi\":\"10.1111/1440-1681.13874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Glycolysis is vital for the excessive proliferation of keratinocytes in psoriasis, and uridine phosphorylase-1 (UPP1) functions as an enhancer of cancer cell proliferation. However, little is known about whether UPP1 promotes keratinocyte proliferation and accelerates psoriasis development. This study revealed that UPP1 facilitates cell viability and cell-cycle progression in human epidermal keratinocytes (HEKs) by modulating the glycolytic pathway. Bioinformatics analysis of UPP1 gene expression and its correlation with the Reactome revealed that UPP1 mRNA expression, cell-cycle progression, the interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway and glycolysis were positively associated with psoriasis. Cell proliferation, the cell cycle and glycolysis were evaluated after UPP1 was silenced or overexpressed. The results showed that UPP1 overexpression increased cell proliferation, cell-cycle progression and glycolysis, which was contrary to the effects of UPP1 silencing. However, the STAT3 inhibitor diminished UPP1 expression because STAT3 can bind to the UPP1 promoter. In conclusion, UPP1 was significantly activated by the IL-6/STAT3 pathway and could modulate glycolysis to regulate cell proliferation and cell-cycle progression in keratinocytes during the development of psoriasis.</p>\",\"PeriodicalId\":50684,\"journal\":{\"name\":\"Clinical and Experimental Pharmacology and Physiology\",\"volume\":\"51 7\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Pharmacology and Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.13874\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.13874","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Uridine phosphorylase-1 promotes cell viability and cell-cycle progression in human epidermal keratinocytes via the glycolytic pathway
Glycolysis is vital for the excessive proliferation of keratinocytes in psoriasis, and uridine phosphorylase-1 (UPP1) functions as an enhancer of cancer cell proliferation. However, little is known about whether UPP1 promotes keratinocyte proliferation and accelerates psoriasis development. This study revealed that UPP1 facilitates cell viability and cell-cycle progression in human epidermal keratinocytes (HEKs) by modulating the glycolytic pathway. Bioinformatics analysis of UPP1 gene expression and its correlation with the Reactome revealed that UPP1 mRNA expression, cell-cycle progression, the interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway and glycolysis were positively associated with psoriasis. Cell proliferation, the cell cycle and glycolysis were evaluated after UPP1 was silenced or overexpressed. The results showed that UPP1 overexpression increased cell proliferation, cell-cycle progression and glycolysis, which was contrary to the effects of UPP1 silencing. However, the STAT3 inhibitor diminished UPP1 expression because STAT3 can bind to the UPP1 promoter. In conclusion, UPP1 was significantly activated by the IL-6/STAT3 pathway and could modulate glycolysis to regulate cell proliferation and cell-cycle progression in keratinocytes during the development of psoriasis.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.