用于α-葡萄糖苷酶活性比色和荧光传感的双功能锑(III)修饰 Ce-MOF 纳米探针。

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL Talanta Pub Date : 2024-08-15 Epub Date: 2024-05-22 DOI:10.1016/j.talanta.2024.126304
Yi Xiao, Pengcheng Huang, Fang-Ying Wu
{"title":"用于α-葡萄糖苷酶活性比色和荧光传感的双功能锑(III)修饰 Ce-MOF 纳米探针。","authors":"Yi Xiao, Pengcheng Huang, Fang-Ying Wu","doi":"10.1016/j.talanta.2024.126304","DOIUrl":null,"url":null,"abstract":"<p><p>α-Glucosidase, which directly involves in the metabolism of starch and glycogen and causes an increase in blood sugar level, is the major target enzyme for the precaution and therapy of type II diabetes. Based on the previous work, we adopted a post-synthetic modification method to encapsulate Tb<sup>3+</sup> into Ce-MOF nanozyme which owned mixed valence states. Tb@Ce-MOF displayed induced luminescence characteristic and exceptional oxidase-like activity that could oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue ox-TMB. α-Glucosidase can hydrolyze the substrate l-ascorbic acid-2-O-α-d-glucopyranosyl (AAG) to generate ascorbic acid (AA), which could increase the Ce<sup>3+</sup>/Ce<sup>4+</sup> redox valence mode in Tb@Ce-MOF, leading to the inhibition of the allochroic reaction of TMB and the decreased absorption of ox-TMB at 652 nm. The energy transfer (EnT) process from Ce<sup>3+</sup> to Tb<sup>3+</sup> will enhance due to the increased Ce<sup>3+</sup>/Ce<sup>4+</sup> mode in Tb@Ce-MOF, which will result in an enhanced fluorescence signal of Tb@Ce-MOF at 550 nm. But the addition of inhibitor acarbose will inhibit the above process. We have constructed a dual-mode detection platform of α-glucosidase and its inhibitor via colorimetric and fluorometric method. The linear range of α-glucosidase were 0.01-0.5 U/mL (colorimetric mode) and 0.8-1.5 U/mL (fluorometric mode), respectively, with a detection limit as low as 0.0018 U/mL. Furthermore, our approach was also successfully employed to the analysis of α-glucosidase in serum samples.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifunctional Tb(III)-modified Ce-MOF nanoprobe for colorimetric and fluorescence sensing of α-glucosidase activity.\",\"authors\":\"Yi Xiao, Pengcheng Huang, Fang-Ying Wu\",\"doi\":\"10.1016/j.talanta.2024.126304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>α-Glucosidase, which directly involves in the metabolism of starch and glycogen and causes an increase in blood sugar level, is the major target enzyme for the precaution and therapy of type II diabetes. Based on the previous work, we adopted a post-synthetic modification method to encapsulate Tb<sup>3+</sup> into Ce-MOF nanozyme which owned mixed valence states. Tb@Ce-MOF displayed induced luminescence characteristic and exceptional oxidase-like activity that could oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue ox-TMB. α-Glucosidase can hydrolyze the substrate l-ascorbic acid-2-O-α-d-glucopyranosyl (AAG) to generate ascorbic acid (AA), which could increase the Ce<sup>3+</sup>/Ce<sup>4+</sup> redox valence mode in Tb@Ce-MOF, leading to the inhibition of the allochroic reaction of TMB and the decreased absorption of ox-TMB at 652 nm. The energy transfer (EnT) process from Ce<sup>3+</sup> to Tb<sup>3+</sup> will enhance due to the increased Ce<sup>3+</sup>/Ce<sup>4+</sup> mode in Tb@Ce-MOF, which will result in an enhanced fluorescence signal of Tb@Ce-MOF at 550 nm. But the addition of inhibitor acarbose will inhibit the above process. We have constructed a dual-mode detection platform of α-glucosidase and its inhibitor via colorimetric and fluorometric method. The linear range of α-glucosidase were 0.01-0.5 U/mL (colorimetric mode) and 0.8-1.5 U/mL (fluorometric mode), respectively, with a detection limit as low as 0.0018 U/mL. Furthermore, our approach was also successfully employed to the analysis of α-glucosidase in serum samples.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.126304\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.126304","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

α-葡萄糖苷酶直接参与淀粉和糖原的代谢,导致血糖升高,是预防和治疗Ⅱ型糖尿病的主要靶酶。在前人工作的基础上,我们采用后合成修饰的方法将 Tb3+ 封装到具有混合价态的 Ce-MOF 纳米酶中。Tb@Ce-MOF具有诱导发光特性和特殊的氧化酶样活性,能将无色的3,3',5,5'-四甲基联苯胺(TMB)氧化成蓝色的ox-TMB。α-葡萄糖苷酶能水解底物 l-抗坏血酸-2-O-α-d-吡喃葡萄糖基(AAG)生成抗坏血酸(AA),从而增加 Tb@Ce-MOF 中的 Ce3+/Ce4+ 氧化还原价态,导致 TMB 的异色反应受到抑制,ox-TMB 在 652 纳米波长处的吸收降低。由于 Tb@Ce-MOF 中 Ce3+/Ce4+ 模式的增加,从 Ce3+ 到 Tb3+ 的能量转移(EnT)过程将增强,这将导致 Tb@Ce-MOF 在 550 纳米波长处的荧光信号增强。但加入抑制剂阿卡波糖会抑制上述过程。我们通过比色法和荧光法构建了α-葡萄糖苷酶及其抑制剂的双模式检测平台。α-葡萄糖苷酶的线性范围分别为 0.01-0.5 U/mL(比色法)和 0.8-1.5 U/mL(荧光法),检测限低至 0.0018 U/mL。此外,我们的方法还成功地应用于血清样品中α-葡萄糖苷酶的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bifunctional Tb(III)-modified Ce-MOF nanoprobe for colorimetric and fluorescence sensing of α-glucosidase activity.

α-Glucosidase, which directly involves in the metabolism of starch and glycogen and causes an increase in blood sugar level, is the major target enzyme for the precaution and therapy of type II diabetes. Based on the previous work, we adopted a post-synthetic modification method to encapsulate Tb3+ into Ce-MOF nanozyme which owned mixed valence states. Tb@Ce-MOF displayed induced luminescence characteristic and exceptional oxidase-like activity that could oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue ox-TMB. α-Glucosidase can hydrolyze the substrate l-ascorbic acid-2-O-α-d-glucopyranosyl (AAG) to generate ascorbic acid (AA), which could increase the Ce3+/Ce4+ redox valence mode in Tb@Ce-MOF, leading to the inhibition of the allochroic reaction of TMB and the decreased absorption of ox-TMB at 652 nm. The energy transfer (EnT) process from Ce3+ to Tb3+ will enhance due to the increased Ce3+/Ce4+ mode in Tb@Ce-MOF, which will result in an enhanced fluorescence signal of Tb@Ce-MOF at 550 nm. But the addition of inhibitor acarbose will inhibit the above process. We have constructed a dual-mode detection platform of α-glucosidase and its inhibitor via colorimetric and fluorometric method. The linear range of α-glucosidase were 0.01-0.5 U/mL (colorimetric mode) and 0.8-1.5 U/mL (fluorometric mode), respectively, with a detection limit as low as 0.0018 U/mL. Furthermore, our approach was also successfully employed to the analysis of α-glucosidase in serum samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
期刊最新文献
An innovative label-free electrochemical aptamer sensor: utilizing Ti3C2Tx/MoS2/Au NPs for accurate interleukin-6 detection. Selection of a new aptamer targeting amoxicillin for utilization in a label-free electrochemical biosensor. A highly sensitive nanopore platform for measuring RNase A activity. Bifunctional Tb(III)-modified Ce-MOF nanoprobe for colorimetric and fluorescence sensing of α-glucosidase activity. Automated H2O2 monitoring during photo-Fenton processes using an Arduino self-assembled automatic system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1