Li Zhang , Zhi-huang Qiu , Xiaozhen Wei , Mengge Yao , Shao-kun Chen , Jian He , Jian-qiang Ye , Yu-mei Li , Liang-wan Chen
{"title":"10×单细胞测序揭示了具有恶性腺体特性的心脏肌瘤的细胞组成异质性。","authors":"Li Zhang , Zhi-huang Qiu , Xiaozhen Wei , Mengge Yao , Shao-kun Chen , Jian He , Jian-qiang Ye , Yu-mei Li , Liang-wan Chen","doi":"10.1016/j.mvr.2024.104697","DOIUrl":null,"url":null,"abstract":"<div><p>Cardiac myxoma is the most common primary cardiac tumor in adults. The histogenesis and cellular composition of myxoma are still unclear. This study aims to reveal the role of myxoma cell components and their gene expression in tumor development. We obtained single living cells by enzymatic digestion of tissues from 4 cases of surgically resected cardiac myxoma. Of course, there was 1 case of glandular myxoma and 3 cases of nonglandular myxoma. Then, 10× single-cell sequencing was performed. We identified 12 types and 11 types of cell populations in glandular myxoma and nonglandular myxoma, respectively. Heterogeneous epithelial cells are the main components of glandular myxoma. The similarities and differences in T cells in both glandular and nonglandular myxoma were analyzed by KEGG and GO. The most important finding was that there was active communication between T cells and epithelial cells. These results clarify the possible tissue occurrence and heterogeneity of cardiac myxoma and provide a theoretical basis and guidance for clinical diagnosis and treatment.</p></div>","PeriodicalId":18534,"journal":{"name":"Microvascular research","volume":"154 ","pages":"Article 104697"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"10× single-cell sequencing revealed cellular composition heterogeneity in cardiac myxoma with malignant glandular properties\",\"authors\":\"Li Zhang , Zhi-huang Qiu , Xiaozhen Wei , Mengge Yao , Shao-kun Chen , Jian He , Jian-qiang Ye , Yu-mei Li , Liang-wan Chen\",\"doi\":\"10.1016/j.mvr.2024.104697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cardiac myxoma is the most common primary cardiac tumor in adults. The histogenesis and cellular composition of myxoma are still unclear. This study aims to reveal the role of myxoma cell components and their gene expression in tumor development. We obtained single living cells by enzymatic digestion of tissues from 4 cases of surgically resected cardiac myxoma. Of course, there was 1 case of glandular myxoma and 3 cases of nonglandular myxoma. Then, 10× single-cell sequencing was performed. We identified 12 types and 11 types of cell populations in glandular myxoma and nonglandular myxoma, respectively. Heterogeneous epithelial cells are the main components of glandular myxoma. The similarities and differences in T cells in both glandular and nonglandular myxoma were analyzed by KEGG and GO. The most important finding was that there was active communication between T cells and epithelial cells. These results clarify the possible tissue occurrence and heterogeneity of cardiac myxoma and provide a theoretical basis and guidance for clinical diagnosis and treatment.</p></div>\",\"PeriodicalId\":18534,\"journal\":{\"name\":\"Microvascular research\",\"volume\":\"154 \",\"pages\":\"Article 104697\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microvascular research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026286224000463\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microvascular research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026286224000463","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
摘要
心脏肌瘤是成人最常见的原发性心脏肿瘤。心肌瘤的组织发生和细胞组成至今仍不清楚。本研究旨在揭示肌瘤细胞成分及其基因表达在肿瘤发生发展中的作用。我们通过酶解 4 例手术切除的心脏肌瘤组织,获得了单个活细胞。其中,腺肌瘤 1 例,非腺肌瘤 3 例。然后,进行了 10× 单细胞测序。我们在腺肌瘤和非腺体肌瘤中分别发现了 12 种和 11 种细胞群。异型上皮细胞是腺肌瘤的主要成分。通过 KEGG 和 GO 分析了腺肌瘤和非腺肌瘤中 T 细胞的异同。最重要的发现是 T 细胞与上皮细胞之间存在活跃的交流。这些结果澄清了心脏肌瘤可能的组织发生和异质性,为临床诊断和治疗提供了理论依据和指导。
10× single-cell sequencing revealed cellular composition heterogeneity in cardiac myxoma with malignant glandular properties
Cardiac myxoma is the most common primary cardiac tumor in adults. The histogenesis and cellular composition of myxoma are still unclear. This study aims to reveal the role of myxoma cell components and their gene expression in tumor development. We obtained single living cells by enzymatic digestion of tissues from 4 cases of surgically resected cardiac myxoma. Of course, there was 1 case of glandular myxoma and 3 cases of nonglandular myxoma. Then, 10× single-cell sequencing was performed. We identified 12 types and 11 types of cell populations in glandular myxoma and nonglandular myxoma, respectively. Heterogeneous epithelial cells are the main components of glandular myxoma. The similarities and differences in T cells in both glandular and nonglandular myxoma were analyzed by KEGG and GO. The most important finding was that there was active communication between T cells and epithelial cells. These results clarify the possible tissue occurrence and heterogeneity of cardiac myxoma and provide a theoretical basis and guidance for clinical diagnosis and treatment.
期刊介绍:
Microvascular Research is dedicated to the dissemination of fundamental information related to the microvascular field. Full-length articles presenting the results of original research and brief communications are featured.
Research Areas include:
• Angiogenesis
• Biochemistry
• Bioengineering
• Biomathematics
• Biophysics
• Cancer
• Circulatory homeostasis
• Comparative physiology
• Drug delivery
• Neuropharmacology
• Microvascular pathology
• Rheology
• Tissue Engineering.