使用局部稀疏变换器的深度学习框架,利用激光雷达进行三维建筑工人检测

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer-Aided Civil and Infrastructure Engineering Pub Date : 2024-05-26 DOI:10.1111/mice.13238
Mingyu Zhang, Lei Wang, Shuai Han, Shuyuan Wang, Heng Li
{"title":"使用局部稀疏变换器的深度学习框架,利用激光雷达进行三维建筑工人检测","authors":"Mingyu Zhang, Lei Wang, Shuai Han, Shuyuan Wang, Heng Li","doi":"10.1111/mice.13238","DOIUrl":null,"url":null,"abstract":"Autonomous equipment is playing an increasingly important role in construction tasks. It is essential to equip autonomous equipment with powerful 3D detection capability to avoid accidents and inefficiency. However, there is limited research within the construction field that has extended detection to 3D. To this end, this study develops a light detection and ranging (LiDAR)-based deep-learning model for the 3D detection of workers on construction sites. The proposed model adopts a voxel-based anchor-free 3D object detection paradigm. To enhance the feature extraction capability for tough detection tasks, a novel Transformer-based block is proposed, where the multi-head self-attention is applied in local grid regions. The detection model integrates the Transformer blocks with 3D sparse convolution to extract wide and local features while pruning redundant features in modified downsampling layers. To train and test the proposed model, a LiDAR point cloud dataset was created, which includes workers in construction sites with 3D box annotations. The experiment results indicate that the proposed model outperforms the baseline models with higher mean average precision and smaller regression errors. The method in the study is promising to provide worker detection with rich and accurate 3D information required by construction automation.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning framework with Local Sparse Transformer for construction worker detection in 3D with LiDAR\",\"authors\":\"Mingyu Zhang, Lei Wang, Shuai Han, Shuyuan Wang, Heng Li\",\"doi\":\"10.1111/mice.13238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous equipment is playing an increasingly important role in construction tasks. It is essential to equip autonomous equipment with powerful 3D detection capability to avoid accidents and inefficiency. However, there is limited research within the construction field that has extended detection to 3D. To this end, this study develops a light detection and ranging (LiDAR)-based deep-learning model for the 3D detection of workers on construction sites. The proposed model adopts a voxel-based anchor-free 3D object detection paradigm. To enhance the feature extraction capability for tough detection tasks, a novel Transformer-based block is proposed, where the multi-head self-attention is applied in local grid regions. The detection model integrates the Transformer blocks with 3D sparse convolution to extract wide and local features while pruning redundant features in modified downsampling layers. To train and test the proposed model, a LiDAR point cloud dataset was created, which includes workers in construction sites with 3D box annotations. The experiment results indicate that the proposed model outperforms the baseline models with higher mean average precision and smaller regression errors. The method in the study is promising to provide worker detection with rich and accurate 3D information required by construction automation.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13238\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13238","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

自主设备在施工任务中发挥着越来越重要的作用。为避免事故和低效率,必须为自主设备配备强大的三维检测能力。然而,在建筑领域,将探测功能扩展到三维的研究还很有限。为此,本研究开发了一种基于光探测和测距(LiDAR)的深度学习模型,用于建筑工地工人的三维检测。所提出的模型采用了基于体素的无锚三维物体检测范式。为了增强针对艰巨检测任务的特征提取能力,提出了一种基于变换器的新型块,在局部网格区域应用多头自注意。检测模型将变换器块与三维稀疏卷积整合在一起,以提取广域和局部特征,同时在修改后的下采样层中修剪冗余特征。为了训练和测试所提出的模型,我们创建了一个激光雷达点云数据集,其中包括带有三维方框注释的建筑工地工人。实验结果表明,所提出的模型优于基线模型,平均精度更高,回归误差更小。研究中的方法有望为建筑自动化提供工人检测所需的丰富而准确的三维信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning framework with Local Sparse Transformer for construction worker detection in 3D with LiDAR
Autonomous equipment is playing an increasingly important role in construction tasks. It is essential to equip autonomous equipment with powerful 3D detection capability to avoid accidents and inefficiency. However, there is limited research within the construction field that has extended detection to 3D. To this end, this study develops a light detection and ranging (LiDAR)-based deep-learning model for the 3D detection of workers on construction sites. The proposed model adopts a voxel-based anchor-free 3D object detection paradigm. To enhance the feature extraction capability for tough detection tasks, a novel Transformer-based block is proposed, where the multi-head self-attention is applied in local grid regions. The detection model integrates the Transformer blocks with 3D sparse convolution to extract wide and local features while pruning redundant features in modified downsampling layers. To train and test the proposed model, a LiDAR point cloud dataset was created, which includes workers in construction sites with 3D box annotations. The experiment results indicate that the proposed model outperforms the baseline models with higher mean average precision and smaller regression errors. The method in the study is promising to provide worker detection with rich and accurate 3D information required by construction automation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
期刊最新文献
Self‐training with Bayesian neural networks and spatial priors for unsupervised domain adaptation in crack segmentation Multifidelity graph neural networks for efficient and accurate mesh‐based partial differential equations surrogate modeling A domain adaptation methodology for enhancing the classification of structural condition states in continuously monitored historical domes Integrated vision language and foundation model for automated estimation of building lowest floor elevation Bridge damage identification based on synchronous statistical moment theory of vehicle–bridge interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1