Norbert Hidvégi, Judit Dobránszki, Bianka Tóth, Andrea Gulyás
{"title":"番茄和马铃薯中的 XTH 基因对环境机械力的表达反应:重点关注对降雨、风和触摸的反应行为。","authors":"Norbert Hidvégi, Judit Dobránszki, Bianka Tóth, Andrea Gulyás","doi":"10.1080/15592324.2024.2360296","DOIUrl":null,"url":null,"abstract":"<p><p>Rainfall, wind and touch, as mechanical forces, were mimicked on 6-week-old soil-grown tomato and potato under controlled conditions. Expression level changes of xyloglucan endotransglucosylase/hydrolase genes (<i>XTH</i>s) of tomato (<i>Solanum lycopersicum</i> L. cv. Micro Tom; <i>SlXTH</i>s) and potato (<i>Solanum tuberosum</i> L. cv. Desirée; <i>StXTH</i>s) were analyzed in response to these mechanical forces. Transcription intensity of every <i>SlXTH</i>s of tomato was altered in response to rainfall, while the expression intensity of 72% and 64% of <i>SlXTH</i>s was modified by wind and touch, respectively. Ninety-one percent of <i>StXTH</i>s (32 out of 35) in potato responded to the rainfall, while 49% and 66% of the <i>StXTH</i>s were responsive to the wind and touch treatments, respectively. As previously demonstrated, all <i>StXTH</i>s were responsive to ultrasound treatment, and all were sensitive to one or more of the environmental mechanical factors examined in the current study. To our best knowledge, this is the first study to demonstrate that these ubiquitous mechanical environmental cues, such as rainfall, wind and touch, influence the transcription of most <i>XTH</i>s examined in both species.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2360296"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141476/pdf/","citationCount":"0","resultStr":"{\"title\":\"Expression responses of <i>XTH</i> genes in tomato and potato to environmental mechanical forces: focus on behavior in response to rainfall, wind and touch.\",\"authors\":\"Norbert Hidvégi, Judit Dobránszki, Bianka Tóth, Andrea Gulyás\",\"doi\":\"10.1080/15592324.2024.2360296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rainfall, wind and touch, as mechanical forces, were mimicked on 6-week-old soil-grown tomato and potato under controlled conditions. Expression level changes of xyloglucan endotransglucosylase/hydrolase genes (<i>XTH</i>s) of tomato (<i>Solanum lycopersicum</i> L. cv. Micro Tom; <i>SlXTH</i>s) and potato (<i>Solanum tuberosum</i> L. cv. Desirée; <i>StXTH</i>s) were analyzed in response to these mechanical forces. Transcription intensity of every <i>SlXTH</i>s of tomato was altered in response to rainfall, while the expression intensity of 72% and 64% of <i>SlXTH</i>s was modified by wind and touch, respectively. Ninety-one percent of <i>StXTH</i>s (32 out of 35) in potato responded to the rainfall, while 49% and 66% of the <i>StXTH</i>s were responsive to the wind and touch treatments, respectively. As previously demonstrated, all <i>StXTH</i>s were responsive to ultrasound treatment, and all were sensitive to one or more of the environmental mechanical factors examined in the current study. To our best knowledge, this is the first study to demonstrate that these ubiquitous mechanical environmental cues, such as rainfall, wind and touch, influence the transcription of most <i>XTH</i>s examined in both species.</p>\",\"PeriodicalId\":94172,\"journal\":{\"name\":\"Plant signaling & behavior\",\"volume\":\"19 1\",\"pages\":\"2360296\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141476/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant signaling & behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2024.2360296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2024.2360296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Expression responses of XTH genes in tomato and potato to environmental mechanical forces: focus on behavior in response to rainfall, wind and touch.
Rainfall, wind and touch, as mechanical forces, were mimicked on 6-week-old soil-grown tomato and potato under controlled conditions. Expression level changes of xyloglucan endotransglucosylase/hydrolase genes (XTHs) of tomato (Solanum lycopersicum L. cv. Micro Tom; SlXTHs) and potato (Solanum tuberosum L. cv. Desirée; StXTHs) were analyzed in response to these mechanical forces. Transcription intensity of every SlXTHs of tomato was altered in response to rainfall, while the expression intensity of 72% and 64% of SlXTHs was modified by wind and touch, respectively. Ninety-one percent of StXTHs (32 out of 35) in potato responded to the rainfall, while 49% and 66% of the StXTHs were responsive to the wind and touch treatments, respectively. As previously demonstrated, all StXTHs were responsive to ultrasound treatment, and all were sensitive to one or more of the environmental mechanical factors examined in the current study. To our best knowledge, this is the first study to demonstrate that these ubiquitous mechanical environmental cues, such as rainfall, wind and touch, influence the transcription of most XTHs examined in both species.