{"title":"用于解决数值优化问题的强化学习驱动蛾焰优化算法","authors":"Fuqing Zhao, Yuqing Du, Qiaoyun Wang","doi":"10.1049/cim2.12101","DOIUrl":null,"url":null,"abstract":"<p>Moth-flame optimisation (MFO) algorithm has received a lot of attention recently, due to its simple structure and easy coding. Researchers have demonstrated that the original MFO algorithm suffers from the drawbacks of insufficient variety, slow convergence speed, and readily sliding into local optimum, which are brought about by the imbalance between local and global search. Reinforcement learning driven moth-flame optimisation (RLMFO) algorithm is designed to correct these issues. Opposition learning is employed to broaden the variety of the initial population. Reinforcement learning is introduced to direct the local and global search process of the algorithm. A strategy pool containing Gaussian mutation (GM), Cauchy mutation (CM), Lévy mutation (LM), and elite strategy (ES) is created to hold strategies with various functions. RLMFO is verified on the benchmark test suite in CEC 2017. RLMFO performs better than cutting-edge algorithms according to experimental findings.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12101","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning driven moth-flame optimisation algorithm for solving numerical optimisation problems\",\"authors\":\"Fuqing Zhao, Yuqing Du, Qiaoyun Wang\",\"doi\":\"10.1049/cim2.12101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Moth-flame optimisation (MFO) algorithm has received a lot of attention recently, due to its simple structure and easy coding. Researchers have demonstrated that the original MFO algorithm suffers from the drawbacks of insufficient variety, slow convergence speed, and readily sliding into local optimum, which are brought about by the imbalance between local and global search. Reinforcement learning driven moth-flame optimisation (RLMFO) algorithm is designed to correct these issues. Opposition learning is employed to broaden the variety of the initial population. Reinforcement learning is introduced to direct the local and global search process of the algorithm. A strategy pool containing Gaussian mutation (GM), Cauchy mutation (CM), Lévy mutation (LM), and elite strategy (ES) is created to hold strategies with various functions. RLMFO is verified on the benchmark test suite in CEC 2017. RLMFO performs better than cutting-edge algorithms according to experimental findings.</p>\",\"PeriodicalId\":33286,\"journal\":{\"name\":\"IET Collaborative Intelligent Manufacturing\",\"volume\":\"6 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12101\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Collaborative Intelligent Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Moth-flame optimisation (MFO) algorithm has received a lot of attention recently, due to its simple structure and easy coding. Researchers have demonstrated that the original MFO algorithm suffers from the drawbacks of insufficient variety, slow convergence speed, and readily sliding into local optimum, which are brought about by the imbalance between local and global search. Reinforcement learning driven moth-flame optimisation (RLMFO) algorithm is designed to correct these issues. Opposition learning is employed to broaden the variety of the initial population. Reinforcement learning is introduced to direct the local and global search process of the algorithm. A strategy pool containing Gaussian mutation (GM), Cauchy mutation (CM), Lévy mutation (LM), and elite strategy (ES) is created to hold strategies with various functions. RLMFO is verified on the benchmark test suite in CEC 2017. RLMFO performs better than cutting-edge algorithms according to experimental findings.
期刊介绍:
IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly.
The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).