Yuyan Guo, Peng Liu, Wenhao Zhang, Zhiguang Guo, Weimin Liu
{"title":"用于高效按需乳液分离的油底超亲水阻燃三维多孔复合材料:石炭藓界面工程设计","authors":"Yuyan Guo, Peng Liu, Wenhao Zhang, Zhiguang Guo, Weimin Liu","doi":"10.1007/s40544-023-0845-4","DOIUrl":null,"url":null,"abstract":"<p>Oil pollution and the energy crisis make oil-water separation an urgent for human need. The widespread use of materials with a single emulsion separation capability is limited. Multifunctional on-demand separation materials can adapt to a wide range of application scenarios, thus having a wider range of applications. The underoil superhydrophilic surface is of great significance for realizing the on-demand separation of oil/water emulsions through the removal of water in the oil and oil in the water. A 3D porous emulsion separation material based on the superhydrophilic principle of sphagnum moss was designed. The material was prepared in a simple step by taking advantage of the adhesion of polydopamine and the introduction of the as-prepared superhydrophilic BaSO<sub>4</sub> nanoparticles to achieve superhydrophilicity with a water contact angle (WCA) of 0° and an oil contact angle (OCA) of 157.3°, resulting in excellent separation performance for both water-in-oil and oil-in-water emulsions. Underoil superhydrophilic porous composite (OSPC) can complete two kinds of emulsion separations by filtration or adsorption. It adsorbs water from water-in-oil emulsion to achieve separation, with a good adsorption capacity of 74.38 g/g and efficiency up to 99%. It can also filter oil-in-water emulsions with an efficiency of 99.92%. The separation efficiencies are all almost unchanged after ten separation cycles. Furthermore, the material has excellent flame retardancy, which reduces the possibility of secondary disasters. The three-dimensional porous sponge has excellent on-demand separation performance for multiple emulsions. It provides a new preparation strategy for underoil superhydrophilic materials and a new idea for the design direction of special wetting materials for the on-demand separation of oil/water emulsions.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Underoil superhydrophilic flame-retardant 3D porous composite for efficient on-demand emulsion separation: Interface engineering design on sphagnum moss\",\"authors\":\"Yuyan Guo, Peng Liu, Wenhao Zhang, Zhiguang Guo, Weimin Liu\",\"doi\":\"10.1007/s40544-023-0845-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oil pollution and the energy crisis make oil-water separation an urgent for human need. The widespread use of materials with a single emulsion separation capability is limited. Multifunctional on-demand separation materials can adapt to a wide range of application scenarios, thus having a wider range of applications. The underoil superhydrophilic surface is of great significance for realizing the on-demand separation of oil/water emulsions through the removal of water in the oil and oil in the water. A 3D porous emulsion separation material based on the superhydrophilic principle of sphagnum moss was designed. The material was prepared in a simple step by taking advantage of the adhesion of polydopamine and the introduction of the as-prepared superhydrophilic BaSO<sub>4</sub> nanoparticles to achieve superhydrophilicity with a water contact angle (WCA) of 0° and an oil contact angle (OCA) of 157.3°, resulting in excellent separation performance for both water-in-oil and oil-in-water emulsions. Underoil superhydrophilic porous composite (OSPC) can complete two kinds of emulsion separations by filtration or adsorption. It adsorbs water from water-in-oil emulsion to achieve separation, with a good adsorption capacity of 74.38 g/g and efficiency up to 99%. It can also filter oil-in-water emulsions with an efficiency of 99.92%. The separation efficiencies are all almost unchanged after ten separation cycles. Furthermore, the material has excellent flame retardancy, which reduces the possibility of secondary disasters. The three-dimensional porous sponge has excellent on-demand separation performance for multiple emulsions. It provides a new preparation strategy for underoil superhydrophilic materials and a new idea for the design direction of special wetting materials for the on-demand separation of oil/water emulsions.</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40544-023-0845-4\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-023-0845-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Underoil superhydrophilic flame-retardant 3D porous composite for efficient on-demand emulsion separation: Interface engineering design on sphagnum moss
Oil pollution and the energy crisis make oil-water separation an urgent for human need. The widespread use of materials with a single emulsion separation capability is limited. Multifunctional on-demand separation materials can adapt to a wide range of application scenarios, thus having a wider range of applications. The underoil superhydrophilic surface is of great significance for realizing the on-demand separation of oil/water emulsions through the removal of water in the oil and oil in the water. A 3D porous emulsion separation material based on the superhydrophilic principle of sphagnum moss was designed. The material was prepared in a simple step by taking advantage of the adhesion of polydopamine and the introduction of the as-prepared superhydrophilic BaSO4 nanoparticles to achieve superhydrophilicity with a water contact angle (WCA) of 0° and an oil contact angle (OCA) of 157.3°, resulting in excellent separation performance for both water-in-oil and oil-in-water emulsions. Underoil superhydrophilic porous composite (OSPC) can complete two kinds of emulsion separations by filtration or adsorption. It adsorbs water from water-in-oil emulsion to achieve separation, with a good adsorption capacity of 74.38 g/g and efficiency up to 99%. It can also filter oil-in-water emulsions with an efficiency of 99.92%. The separation efficiencies are all almost unchanged after ten separation cycles. Furthermore, the material has excellent flame retardancy, which reduces the possibility of secondary disasters. The three-dimensional porous sponge has excellent on-demand separation performance for multiple emulsions. It provides a new preparation strategy for underoil superhydrophilic materials and a new idea for the design direction of special wetting materials for the on-demand separation of oil/water emulsions.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.