基于 Leap 运动控制器的协作机械手交互式手势控制系统

IF 2.1 4区 工程技术 Advances in Mechanical Engineering Pub Date : 2024-05-28 DOI:10.1177/16878132241253101
Yunhan Li, Jingjing Lou, Zhiduan Cai, Pengfei Zheng, Haijun Wu, Xiaosun Wang
{"title":"基于 Leap 运动控制器的协作机械手交互式手势控制系统","authors":"Yunhan Li, Jingjing Lou, Zhiduan Cai, Pengfei Zheng, Haijun Wu, Xiaosun Wang","doi":"10.1177/16878132241253101","DOIUrl":null,"url":null,"abstract":"Gesture control is often used for the control of robotic manipulators. However conventional methods always focus on position control of robotic manipulators and use a fixed position to place gesture detection devices, which limits the flexibility to control and interact. This paper presents an interactive gesture control system based on Leap Motion Controller that can overcome these shortcomings. A coordinate transformation is performed between the position of the left palm detected by Leap Motion Controller and the tool center point (TCP) of the collaborative manipulator to obtain gesture data first. This gesture data is used to control the posture of a six-joint collaborative manipulator-Lite6. The position of gripper is controlled by grip level of the right palm. A controller is designed to manipulate a lift table on which Leap Motion Controller is placed to achieve adaptive ascending and descending movements to meet the needs of operators of different heights and arm spans. A modified Kalman filter is used to filter noise and smooth the signal captured by Leap Motion Controller. The experiments demonstrate that the system can operate stably and accurately control the position, posture, and gripper position of a collaborative manipulator in real time using human palms’ gestures.","PeriodicalId":7357,"journal":{"name":"Advances in Mechanical Engineering","volume":"38 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An interactive gesture control system for collaborative manipulator based on Leap Motion Controller\",\"authors\":\"Yunhan Li, Jingjing Lou, Zhiduan Cai, Pengfei Zheng, Haijun Wu, Xiaosun Wang\",\"doi\":\"10.1177/16878132241253101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gesture control is often used for the control of robotic manipulators. However conventional methods always focus on position control of robotic manipulators and use a fixed position to place gesture detection devices, which limits the flexibility to control and interact. This paper presents an interactive gesture control system based on Leap Motion Controller that can overcome these shortcomings. A coordinate transformation is performed between the position of the left palm detected by Leap Motion Controller and the tool center point (TCP) of the collaborative manipulator to obtain gesture data first. This gesture data is used to control the posture of a six-joint collaborative manipulator-Lite6. The position of gripper is controlled by grip level of the right palm. A controller is designed to manipulate a lift table on which Leap Motion Controller is placed to achieve adaptive ascending and descending movements to meet the needs of operators of different heights and arm spans. A modified Kalman filter is used to filter noise and smooth the signal captured by Leap Motion Controller. The experiments demonstrate that the system can operate stably and accurately control the position, posture, and gripper position of a collaborative manipulator in real time using human palms’ gestures.\",\"PeriodicalId\":7357,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132241253101\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132241253101","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

手势控制通常用于控制机器人机械手。然而,传统方法总是侧重于机器人机械手的位置控制,并使用固定位置来放置手势检测设备,这限制了控制和交互的灵活性。本文提出的基于 Leap 运动控制器的交互式手势控制系统可以克服这些缺点。Leap 运动控制器检测到的左手掌位置与协作机械手的工具中心点(TCP)之间进行坐标变换,首先获取手势数据。这些手势数据用于控制六关节协作机械手--Lite6 的姿态。抓手的位置由右掌的抓握程度控制。设计了一个控制器来操纵放置 Leap 运动控制器的升降台,以实现自适应的上升和下降运动,从而满足不同身高和臂展的操作员的需求。修改后的卡尔曼滤波器用于过滤噪音和平滑 Leap 运动控制器捕获的信号。实验证明,该系统可以稳定运行,并能利用人类手掌的手势实时准确地控制协作机械手的位置、姿势和抓手位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An interactive gesture control system for collaborative manipulator based on Leap Motion Controller
Gesture control is often used for the control of robotic manipulators. However conventional methods always focus on position control of robotic manipulators and use a fixed position to place gesture detection devices, which limits the flexibility to control and interact. This paper presents an interactive gesture control system based on Leap Motion Controller that can overcome these shortcomings. A coordinate transformation is performed between the position of the left palm detected by Leap Motion Controller and the tool center point (TCP) of the collaborative manipulator to obtain gesture data first. This gesture data is used to control the posture of a six-joint collaborative manipulator-Lite6. The position of gripper is controlled by grip level of the right palm. A controller is designed to manipulate a lift table on which Leap Motion Controller is placed to achieve adaptive ascending and descending movements to meet the needs of operators of different heights and arm spans. A modified Kalman filter is used to filter noise and smooth the signal captured by Leap Motion Controller. The experiments demonstrate that the system can operate stably and accurately control the position, posture, and gripper position of a collaborative manipulator in real time using human palms’ gestures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering Engineering-Mechanical Engineering
自引率
4.80%
发文量
353
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
期刊最新文献
Influence of urea solution condition on NOx reduction in marine diesel engines Characteristics of deploying longitudinal folding wings with compound actuation Research on the service life of bearings in the gearbox of rolling mill transmission system under non-steady lubrication state Research and application of a coupled wheel-track off-road robot based on separate track structure Research on energy consumption evaluation and energy-saving design of cranes in service based on structure-mechanism coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1