Orestis Alpos, Christian Cachin, Björn Tackmann, Luca Zanolini
{"title":"非对称分布式信任","authors":"Orestis Alpos, Christian Cachin, Björn Tackmann, Luca Zanolini","doi":"10.1007/s00446-024-00469-1","DOIUrl":null,"url":null,"abstract":"<p>Quorum systems are a key abstraction in distributed fault-tolerant computing for capturing trust assumptions. They can be found at the core of many algorithms for implementing reliable broadcasts, shared memory, consensus and other problems. This paper introduces <i>asymmetric Byzantine quorum systems</i> that model subjective trust. Every process is free to choose which combinations of other processes it trusts and which ones it considers faulty. Asymmetric quorum systems strictly generalize standard Byzantine quorum systems, which have only one global trust assumption for all processes. This work also presents protocols that implement abstractions of shared memory, broadcast primitives, and a consensus protocol among processes prone to Byzantine faults and asymmetric trust. The model and protocols pave the way for realizing more elaborate algorithms with asymmetric trust.\n</p>","PeriodicalId":50569,"journal":{"name":"Distributed Computing","volume":"48 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric distributed trust\",\"authors\":\"Orestis Alpos, Christian Cachin, Björn Tackmann, Luca Zanolini\",\"doi\":\"10.1007/s00446-024-00469-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quorum systems are a key abstraction in distributed fault-tolerant computing for capturing trust assumptions. They can be found at the core of many algorithms for implementing reliable broadcasts, shared memory, consensus and other problems. This paper introduces <i>asymmetric Byzantine quorum systems</i> that model subjective trust. Every process is free to choose which combinations of other processes it trusts and which ones it considers faulty. Asymmetric quorum systems strictly generalize standard Byzantine quorum systems, which have only one global trust assumption for all processes. This work also presents protocols that implement abstractions of shared memory, broadcast primitives, and a consensus protocol among processes prone to Byzantine faults and asymmetric trust. The model and protocols pave the way for realizing more elaborate algorithms with asymmetric trust.\\n</p>\",\"PeriodicalId\":50569,\"journal\":{\"name\":\"Distributed Computing\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00446-024-00469-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00446-024-00469-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Quorum systems are a key abstraction in distributed fault-tolerant computing for capturing trust assumptions. They can be found at the core of many algorithms for implementing reliable broadcasts, shared memory, consensus and other problems. This paper introduces asymmetric Byzantine quorum systems that model subjective trust. Every process is free to choose which combinations of other processes it trusts and which ones it considers faulty. Asymmetric quorum systems strictly generalize standard Byzantine quorum systems, which have only one global trust assumption for all processes. This work also presents protocols that implement abstractions of shared memory, broadcast primitives, and a consensus protocol among processes prone to Byzantine faults and asymmetric trust. The model and protocols pave the way for realizing more elaborate algorithms with asymmetric trust.
期刊介绍:
The international journal Distributed Computing provides a forum for original and significant contributions to the theory, design, specification and implementation of distributed systems.
Topics covered by the journal include but are not limited to:
design and analysis of distributed algorithms;
multiprocessor and multi-core architectures and algorithms;
synchronization protocols and concurrent programming;
distributed operating systems and middleware;
fault-tolerance, reliability and availability;
architectures and protocols for communication networks and peer-to-peer systems;
security in distributed computing, cryptographic protocols;
mobile, sensor, and ad hoc networks;
internet applications;
concurrency theory;
specification, semantics, verification, and testing of distributed systems.
In general, only original papers will be considered. By virtue of submitting a manuscript to the journal, the authors attest that it has not been published or submitted simultaneously for publication elsewhere. However, papers previously presented in conference proceedings may be submitted in enhanced form. If a paper has appeared previously, in any form, the authors must clearly indicate this and provide an account of the differences between the previously appeared form and the submission.