NeCGS:三维几何集的神经压缩

Siyu Ren, Junhui Hou, Wenping Wang
{"title":"NeCGS:三维几何集的神经压缩","authors":"Siyu Ren, Junhui Hou, Wenping Wang","doi":"arxiv-2405.15034","DOIUrl":null,"url":null,"abstract":"This paper explores the problem of effectively compressing 3D geometry sets\ncontaining diverse categories. We make \\textit{the first} attempt to tackle\nthis fundamental and challenging problem and propose NeCGS, a neural\ncompression paradigm, which can compress hundreds of detailed and diverse 3D\nmesh models (~684 MB) by about 900 times (0.76 MB) with high accuracy and\npreservation of detailed geometric details. Specifically, we first represent\neach irregular mesh model/shape in a regular representation that implicitly\ndescribes the geometry structure of the model using a 4D regular volume, called\nTSDF-Def volume. Such a regular representation can not only capture local\nsurfaces more effectively but also facilitate the subsequent process. Then we\nconstruct a quantization-aware auto-decoder network architecture to regress\nthese 4D volumes, which can summarize the similarity of local geometric\nstructures within a model and across different models for redundancy\nlimination, resulting in more compact representations, including an embedded\nfeature of a smaller size associated with each model and a network parameter\nset shared by all models. We finally encode the resulting features and network\nparameters into bitstreams through entropy coding. After decompressing the\nfeatures and network parameters, we can reconstruct the TSDF-Def volumes, where\nthe 3D surfaces can be extracted through the deformable marching\ncubes.Extensive experiments and ablation studies demonstrate the significant\nadvantages of our NeCGS over state-of-the-art methods both quantitatively and\nqualitatively.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NeCGS: Neural Compression for 3D Geometry Sets\",\"authors\":\"Siyu Ren, Junhui Hou, Wenping Wang\",\"doi\":\"arxiv-2405.15034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the problem of effectively compressing 3D geometry sets\\ncontaining diverse categories. We make \\\\textit{the first} attempt to tackle\\nthis fundamental and challenging problem and propose NeCGS, a neural\\ncompression paradigm, which can compress hundreds of detailed and diverse 3D\\nmesh models (~684 MB) by about 900 times (0.76 MB) with high accuracy and\\npreservation of detailed geometric details. Specifically, we first represent\\neach irregular mesh model/shape in a regular representation that implicitly\\ndescribes the geometry structure of the model using a 4D regular volume, called\\nTSDF-Def volume. Such a regular representation can not only capture local\\nsurfaces more effectively but also facilitate the subsequent process. Then we\\nconstruct a quantization-aware auto-decoder network architecture to regress\\nthese 4D volumes, which can summarize the similarity of local geometric\\nstructures within a model and across different models for redundancy\\nlimination, resulting in more compact representations, including an embedded\\nfeature of a smaller size associated with each model and a network parameter\\nset shared by all models. We finally encode the resulting features and network\\nparameters into bitstreams through entropy coding. After decompressing the\\nfeatures and network parameters, we can reconstruct the TSDF-Def volumes, where\\nthe 3D surfaces can be extracted through the deformable marching\\ncubes.Extensive experiments and ablation studies demonstrate the significant\\nadvantages of our NeCGS over state-of-the-art methods both quantitatively and\\nqualitatively.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.15034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.15034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了有效压缩包含不同类别的三维几何集的问题。我们首次尝试解决这一基本且具有挑战性的问题,并提出了神经压缩范例 NeCGS,它可以将数百个详细且多样化的三维网格模型(约 684 MB)压缩约 900 倍(0.76 MB),同时具有高精度并保留了详细的几何细节。具体来说,我们首先用一种规则表示法来表示每个不规则网格模型/形状,这种表示法使用一种 4D 规则体(称为 TSDF-Def 体)来隐含描述模型的几何结构。这种规则表示法不仅能更有效地捕捉局部曲面,还能方便后续处理。然后,我们构建了一个量化感知的自动解码器网络架构来重构这些 4D 体积,它可以总结模型内部和不同模型之间局部几何结构的相似性,从而消除冗余,得到更紧凑的表示,包括与每个模型相关的较小尺寸的嵌入式特征和所有模型共享的网络参数集。最后,我们通过熵编码将得到的特征和网络参数编码成比特流。在解压缩特征和网络参数后,我们可以重建 TSDF-Def 卷,通过可变形行进立方体提取三维表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NeCGS: Neural Compression for 3D Geometry Sets
This paper explores the problem of effectively compressing 3D geometry sets containing diverse categories. We make \textit{the first} attempt to tackle this fundamental and challenging problem and propose NeCGS, a neural compression paradigm, which can compress hundreds of detailed and diverse 3D mesh models (~684 MB) by about 900 times (0.76 MB) with high accuracy and preservation of detailed geometric details. Specifically, we first represent each irregular mesh model/shape in a regular representation that implicitly describes the geometry structure of the model using a 4D regular volume, called TSDF-Def volume. Such a regular representation can not only capture local surfaces more effectively but also facilitate the subsequent process. Then we construct a quantization-aware auto-decoder network architecture to regress these 4D volumes, which can summarize the similarity of local geometric structures within a model and across different models for redundancy limination, resulting in more compact representations, including an embedded feature of a smaller size associated with each model and a network parameter set shared by all models. We finally encode the resulting features and network parameters into bitstreams through entropy coding. After decompressing the features and network parameters, we can reconstruct the TSDF-Def volumes, where the 3D surfaces can be extracted through the deformable marching cubes.Extensive experiments and ablation studies demonstrate the significant advantages of our NeCGS over state-of-the-art methods both quantitatively and qualitatively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum Plane Bichromatic Spanning Trees Evolving Distributions Under Local Motion New Lower Bound and Algorithms for Online Geometric Hitting Set Problem Computing shortest paths amid non-overlapping weighted disks Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1