光镊中分子的位点选择性制备和多态读出

Lewis R. B. Picard, Gabriel E. Patenotte, Annie J. Park, Samuel F. Gebretsadkan, Kang-Kuen Ni
{"title":"光镊中分子的位点选择性制备和多态读出","authors":"Lewis R. B. Picard, Gabriel E. Patenotte, Annie J. Park, Samuel F. Gebretsadkan, Kang-Kuen Ni","doi":"10.1103/prxquantum.5.020344","DOIUrl":null,"url":null,"abstract":"Polar molecules are a quantum resource with rich internal structure that can be coherently controlled. The structure, however, also makes the state preparation and measurement (SPAM) of molecules challenging. We advance the SPAM of individual molecules assembled from constituent atoms trapped in optical-tweezer arrays. Sites without <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Na</mi><mi>Cs</mi></mrow></math> molecules are eliminated using high-fidelity <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cs</mi></math> atom detection, increasing the peak molecule filling fraction of the array threefold. We site-selectively initialize the array in a rotational qubit subspace that is insensitive to differential ac Stark shifts from the optical tweezer. Lastly, we detect multiple rotational states per experimental cycle by imaging atoms after sequential state-selective dissociations. These demonstrations extend the SPAM capabilities of molecules for quantum information, simulation, and metrology.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Site-Selective Preparation and Multistate Readout of Molecules in Optical Tweezers\",\"authors\":\"Lewis R. B. Picard, Gabriel E. Patenotte, Annie J. Park, Samuel F. Gebretsadkan, Kang-Kuen Ni\",\"doi\":\"10.1103/prxquantum.5.020344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polar molecules are a quantum resource with rich internal structure that can be coherently controlled. The structure, however, also makes the state preparation and measurement (SPAM) of molecules challenging. We advance the SPAM of individual molecules assembled from constituent atoms trapped in optical-tweezer arrays. Sites without <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Na</mi><mi>Cs</mi></mrow></math> molecules are eliminated using high-fidelity <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Cs</mi></math> atom detection, increasing the peak molecule filling fraction of the array threefold. We site-selectively initialize the array in a rotational qubit subspace that is insensitive to differential ac Stark shifts from the optical tweezer. Lastly, we detect multiple rotational states per experimental cycle by imaging atoms after sequential state-selective dissociations. These demonstrations extend the SPAM capabilities of molecules for quantum information, simulation, and metrology.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.020344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

极性分子是一种量子资源,具有丰富的内部结构,可以进行相干控制。然而,这种结构也使得分子的状态制备和测量(SPAM)具有挑战性。我们推进了由困在光学镊子阵列中的组成原子组装而成的单个分子的 SPAM。利用高保真铯原子探测技术消除了没有 NaCs 分子的位点,从而将阵列的峰值分子填充分数提高了三倍。我们在旋转量子位子空间中对阵列进行了位点选择性初始化,该空间对来自光学镊子的差分交流斯塔克位移不敏感。最后,我们通过对连续状态选择性解离后的原子成像,在每个实验周期检测多个旋转状态。这些演示扩展了分子 SPAM 在量子信息、模拟和计量方面的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Site-Selective Preparation and Multistate Readout of Molecules in Optical Tweezers
Polar molecules are a quantum resource with rich internal structure that can be coherently controlled. The structure, however, also makes the state preparation and measurement (SPAM) of molecules challenging. We advance the SPAM of individual molecules assembled from constituent atoms trapped in optical-tweezer arrays. Sites without NaCs molecules are eliminated using high-fidelity Cs atom detection, increasing the peak molecule filling fraction of the array threefold. We site-selectively initialize the array in a rotational qubit subspace that is insensitive to differential ac Stark shifts from the optical tweezer. Lastly, we detect multiple rotational states per experimental cycle by imaging atoms after sequential state-selective dissociations. These demonstrations extend the SPAM capabilities of molecules for quantum information, simulation, and metrology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Leakage of Single-Qubit Gates for Superconducting Quantum Processors Using Analytical Control Pulse Envelopes Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems Improving Threshold for Fault-Tolerant Color-Code Quantum Computing by Flagged Weight Optimization Progress in Superconductor-Semiconductor Topological Josephson Junctions Mitigating Scattering in a Quantum System Using Only an Integrating Sphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1