Malaurie Paillot, Alan Wong, Sergey A. Denisov, Jean-Pierre Dognon, Mehran Mostafavi, Magali Gauthier, Sophie Le Caër
{"title":"利用辐射化学了解镁水电池中电解质的老化过程","authors":"Malaurie Paillot, Alan Wong, Sergey A. Denisov, Jean-Pierre Dognon, Mehran Mostafavi, Magali Gauthier, Sophie Le Caër","doi":"10.1002/batt.202400209","DOIUrl":null,"url":null,"abstract":"<p>Manufacturing aqueous batteries based on the magnesium cations is an important step towards more sustainable and safer energy storage solutions. Thus, it is important to understand how these systems age and which species are formed throughout numerous charge/discharge cycles. To this end, we have used radiolysis to induce accelerated ageing in concentrated aqueous solutions of magnesium bistriflimide Mg(TFSI)<sub>2</sub> (also called “water-in-salt electrolytes” or WISEs). We demonstrate in this work that the degradation products formed, whether in the gas or liquid phase, are very similar to those formed in concentrated LiTFSI aqueous solutions. In fact, the behavior under ionizing radiation is driven by the anion/water molar ratio regardless of whether the cation is Li<sup>+</sup> or Mg<sup>2+</sup>. This is because both cations are non-reactive, and the bond strengths in the TFSI<sup>−</sup> anion do not vary with the nature of the cation. Reaction mechanisms are proposed to explain the formation of several species under ionizing radiation.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 10","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400209","citationCount":"0","resultStr":"{\"title\":\"Understanding the Ageing Processes of Electrolytes in Aqueous Magnesium Batteries Using Radiation Chemistry\",\"authors\":\"Malaurie Paillot, Alan Wong, Sergey A. Denisov, Jean-Pierre Dognon, Mehran Mostafavi, Magali Gauthier, Sophie Le Caër\",\"doi\":\"10.1002/batt.202400209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Manufacturing aqueous batteries based on the magnesium cations is an important step towards more sustainable and safer energy storage solutions. Thus, it is important to understand how these systems age and which species are formed throughout numerous charge/discharge cycles. To this end, we have used radiolysis to induce accelerated ageing in concentrated aqueous solutions of magnesium bistriflimide Mg(TFSI)<sub>2</sub> (also called “water-in-salt electrolytes” or WISEs). We demonstrate in this work that the degradation products formed, whether in the gas or liquid phase, are very similar to those formed in concentrated LiTFSI aqueous solutions. In fact, the behavior under ionizing radiation is driven by the anion/water molar ratio regardless of whether the cation is Li<sup>+</sup> or Mg<sup>2+</sup>. This is because both cations are non-reactive, and the bond strengths in the TFSI<sup>−</sup> anion do not vary with the nature of the cation. Reaction mechanisms are proposed to explain the formation of several species under ionizing radiation.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"7 10\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400209\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400209\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400209","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Understanding the Ageing Processes of Electrolytes in Aqueous Magnesium Batteries Using Radiation Chemistry
Manufacturing aqueous batteries based on the magnesium cations is an important step towards more sustainable and safer energy storage solutions. Thus, it is important to understand how these systems age and which species are formed throughout numerous charge/discharge cycles. To this end, we have used radiolysis to induce accelerated ageing in concentrated aqueous solutions of magnesium bistriflimide Mg(TFSI)2 (also called “water-in-salt electrolytes” or WISEs). We demonstrate in this work that the degradation products formed, whether in the gas or liquid phase, are very similar to those formed in concentrated LiTFSI aqueous solutions. In fact, the behavior under ionizing radiation is driven by the anion/water molar ratio regardless of whether the cation is Li+ or Mg2+. This is because both cations are non-reactive, and the bond strengths in the TFSI− anion do not vary with the nature of the cation. Reaction mechanisms are proposed to explain the formation of several species under ionizing radiation.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.