Nasimeh Heydaribeni, Xinrui Zhan, Ruisi Zhang, Tina Eliassi-Rad, Farinaz Koushanfar
{"title":"利用超图神经网络进行分布式约束组合优化","authors":"Nasimeh Heydaribeni, Xinrui Zhan, Ruisi Zhang, Tina Eliassi-Rad, Farinaz Koushanfar","doi":"10.1038/s42256-024-00833-7","DOIUrl":null,"url":null,"abstract":"Scalable addressing of high-dimensional constrained combinatorial optimization problems is a challenge that arises in several science and engineering disciplines. Recent work introduced novel applications of graph neural networks for solving quadratic-cost combinatorial optimization problems. However, effective utilization of models such as graph neural networks to address general problems with higher-order constraints is an unresolved challenge. This paper presents a framework, HypOp, that advances the state of the art for solving combinatorial optimization problems in several aspects: (1) it generalizes the prior results to higher-order constrained problems with arbitrary cost functions by leveraging hypergraph neural networks; (2) it enables scalability to larger problems by introducing a new distributed and parallel training architecture; (3) it demonstrates generalizability across different problem formulations by transferring knowledge within the same hypergraph; (4) it substantially boosts the solution accuracy compared with the prior art by suggesting a fine-tuning step using simulated annealing; and (5) it shows remarkable progress on numerous benchmark examples, including hypergraph MaxCut, satisfiability and resource allocation problems, with notable run-time improvements using a combination of fine-tuning and distributed training techniques. We showcase the application of HypOp in scientific discovery by solving a hypergraph MaxCut problem on a National Drug Code drug-substance hypergraph. Through extensive experimentation on various optimization problems, HypOp demonstrates superiority over existing unsupervised-learning-based solvers and generic optimization methods. Bolstering the broad and deep applicability of graph neural networks, Heydaribeni et al. introduce HypOp, a framework that uses hypergraph neural networks to solve general constrained combinatorial optimization problems. The presented method scales and generalizes well, improves accuracy and outperforms existing solvers on various benchmarking examples.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 6","pages":"664-672"},"PeriodicalIF":18.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed constrained combinatorial optimization leveraging hypergraph neural networks\",\"authors\":\"Nasimeh Heydaribeni, Xinrui Zhan, Ruisi Zhang, Tina Eliassi-Rad, Farinaz Koushanfar\",\"doi\":\"10.1038/s42256-024-00833-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scalable addressing of high-dimensional constrained combinatorial optimization problems is a challenge that arises in several science and engineering disciplines. Recent work introduced novel applications of graph neural networks for solving quadratic-cost combinatorial optimization problems. However, effective utilization of models such as graph neural networks to address general problems with higher-order constraints is an unresolved challenge. This paper presents a framework, HypOp, that advances the state of the art for solving combinatorial optimization problems in several aspects: (1) it generalizes the prior results to higher-order constrained problems with arbitrary cost functions by leveraging hypergraph neural networks; (2) it enables scalability to larger problems by introducing a new distributed and parallel training architecture; (3) it demonstrates generalizability across different problem formulations by transferring knowledge within the same hypergraph; (4) it substantially boosts the solution accuracy compared with the prior art by suggesting a fine-tuning step using simulated annealing; and (5) it shows remarkable progress on numerous benchmark examples, including hypergraph MaxCut, satisfiability and resource allocation problems, with notable run-time improvements using a combination of fine-tuning and distributed training techniques. We showcase the application of HypOp in scientific discovery by solving a hypergraph MaxCut problem on a National Drug Code drug-substance hypergraph. Through extensive experimentation on various optimization problems, HypOp demonstrates superiority over existing unsupervised-learning-based solvers and generic optimization methods. Bolstering the broad and deep applicability of graph neural networks, Heydaribeni et al. introduce HypOp, a framework that uses hypergraph neural networks to solve general constrained combinatorial optimization problems. The presented method scales and generalizes well, improves accuracy and outperforms existing solvers on various benchmarking examples.\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"6 6\",\"pages\":\"664-672\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.nature.com/articles/s42256-024-00833-7\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00833-7","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Scalable addressing of high-dimensional constrained combinatorial optimization problems is a challenge that arises in several science and engineering disciplines. Recent work introduced novel applications of graph neural networks for solving quadratic-cost combinatorial optimization problems. However, effective utilization of models such as graph neural networks to address general problems with higher-order constraints is an unresolved challenge. This paper presents a framework, HypOp, that advances the state of the art for solving combinatorial optimization problems in several aspects: (1) it generalizes the prior results to higher-order constrained problems with arbitrary cost functions by leveraging hypergraph neural networks; (2) it enables scalability to larger problems by introducing a new distributed and parallel training architecture; (3) it demonstrates generalizability across different problem formulations by transferring knowledge within the same hypergraph; (4) it substantially boosts the solution accuracy compared with the prior art by suggesting a fine-tuning step using simulated annealing; and (5) it shows remarkable progress on numerous benchmark examples, including hypergraph MaxCut, satisfiability and resource allocation problems, with notable run-time improvements using a combination of fine-tuning and distributed training techniques. We showcase the application of HypOp in scientific discovery by solving a hypergraph MaxCut problem on a National Drug Code drug-substance hypergraph. Through extensive experimentation on various optimization problems, HypOp demonstrates superiority over existing unsupervised-learning-based solvers and generic optimization methods. Bolstering the broad and deep applicability of graph neural networks, Heydaribeni et al. introduce HypOp, a framework that uses hypergraph neural networks to solve general constrained combinatorial optimization problems. The presented method scales and generalizes well, improves accuracy and outperforms existing solvers on various benchmarking examples.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.